首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study is reported of adsorption of an associating Lennard-Jones fluid with four associative sites per molecule in a slit-like pore. The density distribution of particles in the pore and thermodynamics properties are evaluated by using a density functional method. It is found that at low temperatures the fluid exhibits a set of layering transitions, followed by capillary condensation. Transitions are localized by analysing the grand canonical potential. The density profiles of particles and the distribution of unbound and differently bonded particles demonstrate changes in the structure of the fluid in the pore along the phase coexistence. The critical temperature is lower for a confined fluid, compared with the bulk counterpart. However, an increase in the energy of association increases the critical temperature. The envelope of the capillary condensation is narrower than the bulk liquid-vapour phase diagram. The dependence of the solvation force on the energy of association and on the bulk density is discussed.  相似文献   

2.
We derive via diagrammatic perturbation theory the scaling behavior of the condensate and superfluid mass density of a dilute Bose gas just below the condensation temperature, T(c). Sufficiently below T(c) particle excitations are described by mean field (Bogoliubov). Near T(c), however, mean field fails, and the system undergoes a second order phase transition, rather than first order as predicted by Bogoliubov theory. Both condensation and superfluidity occur at the same T(c), and have similar scaling functions below T(c), but different finite size scaling at T(c) to leading order in the system size. A self-consistent two-loop calculation yields the condensate fraction critical exponent, 2beta approximately 0.66.  相似文献   

3.
The bulk magnetic susceptibility chi(T,B) of YbRh(2)(Si(0.95)Ge(0.05))(2) has been investigated close to the field-induced quantum critical point at B(c) = 0.027 T. For B < or= 0.05 T a Curie-Weiss law with a negative Weiss temperature is observed at temperatures below 0.3 K. Outside this region, the susceptibility indicates ferromagnetic quantum critical fluctuations, chi(T) proportional, variantT-0.6 above 0.3 K. At low temperatures the Pauli susceptibility follows chi(0) proportional, variant(B-B(c))(-0.6) and scales with the coefficient of the T(2) term in the electrical resistivity. The Sommerfeld-Wilson ratio is highly enhanced and increases up to 30 close to the critical field.  相似文献   

4.
It has recently been suggested that the organic compound NiCl2-4SC(NH2)2 (DTN) undergoes field-induced Bose-Einstein condensation (BEC) of the Ni spin degrees of freedom. The Ni S = 1 spins exhibit three-dimensional XY antiferromagnetism above a critical field H(c1) approximately 2 T. The spin fluid can be described as a gas of hard-core bosons where the field-induced antiferromagnetic transition corresponds to Bose-Einstein condensation. We have determined the spin Hamiltonian of DTN using inelastic neutron diffraction measurements, and we have studied the high-field phase diagram by means of specific heat and magnetocaloric effect measurements. Our results show that the field-temperature phase boundary approaches a power-law H - H(c1) proportional variant T(alpha)(c) near the quantum critical point, with an exponent that is consistent with the 3D BEC universal value of alpha = 1.5.  相似文献   

5.
We propose multilayer phase diagrams based on recent observations of methane adsorbed on graphite and gold (111). Methane wets graphite at all temperatures observed, but it fully wets gold only above the bulk triple point. Possible reasons for this difference in behavior are discussed. The methane-graphite phase diagram also includes layer by layer condensation with critical points leading to a predicted bulk roughening temperature, and an extension of the bulk melting curve into the multilayer film region where it closes at a triple point with a compressed incommensurate first layer solid phase. Experimental evidence for these features is presented and discussed.  相似文献   

6.
We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))~(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.  相似文献   

7.
An aluminum nanowire switches from superconducting to normal as the current is increased in an upsweep. The switching current (I(s)) averaged over upsweeps approximately follows the depairing critical current (I(c)) but falls below it. Fluctuations in I(s) exhibit three distinct regions of behaviors and are nonmonotonic in temperature: saturation well below the critical temperature T(c), an increase as T(2/3) at intermediate temperatures, and a rapid decrease close to T(c). Heat dissipation analysis indicates that a single phase slip is able to trigger switching at low and intermediate temperatures, whereby the T(2/3) dependence arises from the thermal activation of a phase slip, while saturation at low temperatures provides striking evidence that the phase slips by macroscopic quantum tunneling.  相似文献   

8.
We present highly sensitive Hall effect measurements of the heavy fermion compound CeCoIn5 down to temperatures of 55 mK. A pronounced dip in the differential Hall coefficient | partial differential rho(xy)/ partial differential H| at low temperature and above the upper critical field of superconductivity, H(c2), is attributed to critical spin fluctuations associated with the departure from Landau Fermi liquid behavior. This identification is strongly supported by a systematic suppression of this feature at elevated pressures. The resulting crossover line in the field-temperature phase diagram favors a field induced quantum critical point at mu(0)H(qc) approximately 4.1 T below H(c2)(T=0) suggesting related, yet separate, critical fields.  相似文献   

9.
We describe the direct condensation of a solid from vapor in an annular mica wedge. Neo-pentanol initially condenses as a liquid from 8 to 57 degrees C (the melting point T(m)), followed by nucleation of a solid from vapor for T<45 degrees C. Menthol (T(m) = 42 degrees C) gives only liquid condensates down to 12 degrees C. The adsorbed films of neo-pentanol, which unlike those of menthol show layering transitions, and the disordered crystalline phase of bulk neo-pentanol appear to facilitate condensation of the solid phase. There is evidence for a change in the nature of the solid neo-pentanol condensate with T.  相似文献   

10.
Particles of magnetic fluids (ferrofluids), as is known from experiments, can condense to bulk dense phases at low temperatures (that are close to room temperature) in response to an external magnetic field. It is also known that a uniform external magnetic field increases the threshold temperature of the observed condensation, thus stimulating the condensation process. Within the framework of early theories, this phenomenon is interpreted as a classical gas-liquid phase transition in a system of individual particles involved in a dipole-dipole interaction. However, subsequent investigations have revealed that, before the onset of a bulk phase transition, particles can combine to form a chain cluster or, possibly, a topologically more complex heterogeneous cluster. In an infinitely strong magnetic field, the formation of chains apparently suppresses the onset of a gas-liquid phase transition and the condensation of magnetic particles most likely proceeds according to the scenario of a gas-solid phase transition with a wide gap between spinodal branches. This paper reports on the results of investigations into the specific features of the condensation of particles in the absence of an external magnetic field. An analysis demonstrates that, despite the formation of chains, the condensation of particles in this case can proceed according to the scenario of a gas-liquid phase transition with a critical point in the continuous binodal. Consequently, a uniform magnetic field not only can stimulate the condensation phase transition in a system of magnetic particles but also can be responsible for a qualitative change in the scenario of the phase transition. This inference raises the problem regarding a threshold magnetic field in which there occurs a change in the scenario of the phase transition.  相似文献   

11.
Motivated by the recent prediction that uniaxially compressed aerogel can stabilize the anisotropic A phase over the isotropic B phase, we measure the pressure dependent superfluid fraction of (3)He entrained in 10% axially compressed, 98% porous aerogel. We observe that a broad region of the temperature-pressure phase diagram is occupied by the metastable A phase. The reappearance of the A phase on warming from the B phase, before superfluidity is extinguished at T(c), is in contrast to its absence in uncompressed aerogel. The phase diagram is modified from that of pure (3)He, with the disappearance of the polycritical point (PCP) and the appearance of a region of A phase extending below the PCP of bulk (3)He, even in zero applied magnetic field. The expected alignment of the A phase texture by compression is not observed.  相似文献   

12.
Using a formalism derived by us in an earlier paper we obtain the density profile and solvation force between two identical hard plates separated by a fluid characterized by (i) an Orstein-Zernike correlation function and (ii) a Percus-Yevick sticky sphere correlation function. Example (i) yields an exponential or hyperbolic density profile characterized by a correlation length ξ that diverges at the critical point as (T-Tc )-v . The corresponding force is weak and attractive following an exponential law at large separations. Example (ii) yields an attractive force in the vicinity of the critical region and an oscillatory force at higher densities and/or higher temperatures which can significantly modify forces between colloid particles.  相似文献   

13.
Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir forces in superfluid films. The force is found to become appreciable when the size of the thermal vortex loops is comparable to the film thickness, and the results for TT(c). When applied to a high-T(c) superconducting film connected to a bulk sample, the Casimir force causes a voltage difference to appear between the film and the bulk, and estimates show that this may be readily measurable.  相似文献   

14.
We study thermodynamic properties of a gas of spin 3(52)Cr atoms across Bose-Einstein condensation. Magnetization is free, due to dipole-dipole interactions. We show that the critical temperature for condensation is lowered at extremely low magnetic fields, when the spin degree of freedom is thermally activated. The depolarized gas condenses in only one spin component, unless the magnetic field is set below a critical value, below which a nonferromagnetic phase is favored. Finally, we present a spin thermometry efficient even below the degeneracy temperature.  相似文献   

15.
16.
A controversial issue of the driving force for the phase transition of the one-dimensional (1D) metallic In wires on Si(111) is studied by low-temperature scanning tunneling microscopy and spectroscopy. The energy gap opening and the longitudinal charge ordering through charge transfer at the Fermi level are unambiguously observed. The vacancy defects induce a local charge ordering decoupled from a lattice distortion above T(c), and pin the phase of charge order below T(c). All these results below and above T(c) including the detailed features such as local fluctuations strongly support the 1D charge-density-wave mechanism for the phase transition.  相似文献   

17.
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)相似文献   

18.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

19.
We discuss directed walk models of random copolymers, either adsorbed at a surface or localized at an interface between two immiscible liquids. We consider the response to an applied force which can cause desorption or delocalization into a bulk phase, and calculate the critical force as a function of temperature. The randomness is quenched and, even for directed models, we cannot usually treat the quenched system analytically so we resort to an approximation in which the quenched average is approximated by an annealed average with a side condition which ensures the correct proportion of the types of comonomers. We argue that this approach gives the exact result for the quenched system in some cases and a bound in others.Received: 17 May 2004, Published online: 3 August 2004PACS: 36.20.Ey Conformation (statistics and dynamics) - 05.70.Jk Critical point phenomena in thermodynamics - 64.60.-i General studies of phase transitions  相似文献   

20.
We report on results of specific heat measurements on single crystals of the frustrated quasi-2D spin-1/2 antiferromagnet Cs2CuCl4 (T(N)=0.595 K) in external magnetic fields B<12 T and for temperatures T>30 mK. Decreasing B from high fields leads to the closure of the field-induced gap in the magnon spectrum at a critical field Bc approximately = 8.51 T and a magnetic phase transition is clearly seen below Bc. In the vicinity of Bc, the phase transition boundary is well described by the power law Tc(B) proportional, variant (Bc-B)(1/phi), with the measured critical exponent phi approximately =1.5. These findings are interpreted as a Bose-Einstein condensation of magnons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号