首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Differential scanning calorimetry together with dynamic mechanical analysis were employed to investigate the crystallinity and the miscibility in poly(ethylene oxide)/crosslinked poly(methyl methacrylate) semi-IPN (interpenetrating polymer networks). The crystallinity of poly(ethylene oxide) in the semi-IPN is found to depend on the crosslink density of PMMA as well as the overall content of PEO. Of special interest is that an increase in the crosslink density tends to increase the crystallinity contrary to our expectation, indicating crystallization and phase separation may proceed simultaneously during IPN formation. The investigation of glass transition behaviors with dynamic mechanical analysis suggests phase separation (i.e., there exist two amorphous phases: one PEO-rich phase, the other a PMMA-rich phase). © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Ionic conductivities of the polymer electrolytes prepared from the ionomer (poly(methyl methacrylate-co-alkali metal methacrylate)), lithium perchlorate, and ethylene carbonate as a plasticizer, were studied as a function of the ion content and the alkali-metal cation of the ionomer. It was possible to obtain tough films with room-temperature ionic conductivities of ∼ 10-3 S/cm. The maximum ion conductivities of the polymer electrolytes were obtained at the ion content of 5 mol % for both Li and Na ionomer. The effects of the ion content of the ionomer on the ionic conductivities of the polymer electrolytes were mainly interpreted in terms of the characteristics of the ion aggregate formed in the polymer electrolytes. The thermal dependence of the ionic conductivity was shown to be a non-VTF pattern in some of the polymer electrolytes investigated, which is expected to be due to the presence of the ion aggregate. © John Wiley & Sons, Inc.  相似文献   

3.
A new type of single-ion conductor with fixed cation was synthesized by spontaneous anionic polymerization of 4-vinylpyridine in the presence of short polyethylene oxide ( PEO ) chains as alkylating agents. These comblike polymers have low Tgs and are amorphous with the shorter PEO s. Their conductivities are unaffected by the nature of the anion ( Br , ClO 4, and tosylate) and are controlled by the free volume and the mobility of the pendant cation. By comparison of the results at constant free volume, it is shown that the charge density decreases with the increasing length of pendant PEO demonstrating that PEO acts only as a plasticizing agent. Best conductivity results (σ = 10−5 S cm−1 at 60°C) are obtained with PEO side chains of molecular weight 350. With this sample, the conductivity in the presence of various amounts of added salt (LiTFSI) was studied. A best value of 10−4 S cm−1 at 60°C is obtained with a molar ratio EO/Li of 10. It is shown that, over the range of examined concentrations (0.2–1.3 mol Li kg−1), the reduced conductivity σr/c increases linearly with increasing salt concentration showing that the ion mobility increases continuously. Such behavior is quite unusual since in this concentration range a maximum is generally observed with PEO systems. To interpret this result and by analogy with the behavior of this type of polymer in solution, it is proposed that the conformation of these polymers in the solid state is segregated with the P4VP skeleton more or less confined inside the dense coils surrounded by the PEO side chains. Under the influence of the increasing salt concentration, this microphase separation vanishes progressively: The LiTFSI salt exchanges with the tosylate anions and acts as a miscibility improver agent. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2719–2728, 1997  相似文献   

4.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The chemical reactions between iron(III) and indole-3-acetic (IAA), -propionic (IPA), and -butyric (IBA) acids were studied in acidic aqueous solutions. The motivation of this work was that IAA is one of the most powerful natural plant-growth-regulating substances (phytohormones of the auxin series). Mössbauer spectra of the frozen aqueous solutions of iron(III) with indole-3-alkanoic acids as ligands (L), showed parallel reactions between Fe3+ and the ligands. Partly, it resulted in a complex formation which precipitated in aqueous solution and partly, in a redox process with iron(II) and the oxidised indole-3-alkanoic acids as products. The Mössbauer parameters of the Fe2+ species suggested a hexaaquo coordination environment. The chemical composition and coordination structure of the precipitated complexes were investigated using elemental analysis, Mössbauer spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopic techniques. The complexes were soluble in some organic solvents. So, Mössbauer, FTIR and solution X-ray diffraction measurements were carried out on the solution of complexes in acetone, hexadeutero acetone and methanol, respectively. The data obtained supported the existence of the μ-dihydroxo-bridging structure of the dimer: [L2Fe<(OH)2>FeL2] (where L is indole-3-propionate, -acetate or -butyrate).  相似文献   

6.
This report describes the synthesis of a new zeolitic inorganic–organic polymer electrolyte with the formula [FexSny(CN)zClv(C2nH4n+2On+1)K1]. This material is based on poly(ethylene glycol) 600, SnCl4 and K4[Fe(CN)6], and is obtained via a sol→gel transition. Mid and far Fourie than form infrared (FT‐IR) studies, analytical data and X‐ray Photoelectron spectroscopy (XPS) investigations allowed us to conclude that this material is a mixed inorganic–organic network in which Fe and Sn are bonded by CN bridges and tin atoms by PEG 600 bridges. Mid‐infrared (MIR) FT‐IR investigations demonstrated that the polyether chains assume a conformation of the TGT (T = trans, G = gauche) type. Micrographs of the compound obtained by scanning electron microscopy reveal that its morphology resembles a smooth gummy paste. The conductivity of the material at different temperatures was determined by impedance spectroscopy (IS). Results indicated that the material conducts ionically and that its conductivity is strongly influenced by segmental motion of the polymer network. Finally, this network shows a conductivity of ca. 3.7 × 10−5 S/cm at 25 °C. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Electrical impedance spectroscopy (EIS) model is used to determine ion transport parameters. The transport parameters such as mobility, carrier density and diffusion coefficient of ions are the subject of great interest. The solution cast method is used to fabricate SPEs using polyvinyl alcohol (PVA) loaded with different amounts of sodium iodide (NaI). XRD deconvolution is used to separate the crystalline phase from amorphous phase. The degree of crystallinity is reduced with an increased amount of NaI. FTIR is used to investigate the polymer/salt interactions. To find out the circuit element, the Nyquist plots of impedance results are fitted with EEC modeling. The bulk resistance obtained from the EEC modeling is used to determine DC conductivity. At room temperature the maximum conductivity of 2.41×10-4S/cm is measured. The regions belong to the electrode polarization (EP) effect are distinguished form the spectra of dielectric constant and dielectric loss. Due to the buildup of charge carriers, the dielectric constant and loss are observed to be high at the low-frequency region. Obvious peaks are appeared in the tanδ and M“ spectra at high salt concentrations. Shifting of the tanδ peaks to the high frequency region are detected. The incomplete circular arc of the argand plot is shown the non-Debye relaxation. It is found that with increasing frequency, AC conductivity increased. The regions belong to the EP and DC contributions are differentiated in the AC spectra.  相似文献   

8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号