首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用全二维气相色谱/飞行时间质谱(GC×GC-TOFMS),建立了鱼肉样品中含卤有机污染物的定性和定量分析方法.鱼肉样品用正己烷丙酮(1∶1,V/V)提取,凝胶色谱和复合硅胶柱净化,浓缩富集,全二维气相色谱联用飞行时间质谱(DB-5MS毛细管色谱柱联HT-8色谱柱)检测.软件自动识别后,经三步筛查,共鉴定出含氯或溴化合物72种,其中包括33种多氯联苯,9种有机氯农药,4种多溴联苯醚,4种DDT代谢产物,2种氯代茴香醚,2种氯苯乙烯,1种氯代茴香硫醚及1种甲基三氯生.另外,从质谱信息上看,有16种化合物明显含氯或含溴,但是因为缺少必要的谱库信息不能准确识别.采用外标定量法,对鱼肉样品中检出的主要的10种多氯联苯和1种多溴联苯醚进行了准确定量分析.  相似文献   

2.
Two gas chromatography/mass spectrometry (GC/MS) methods for the determination of polybrominated biphenyls (PBBs) by isotope dilution analysis (IDA) using 13C12‐PBB 153 in the presence of polybrominated diphenyl ethers (PBDEs) were compared. Recovery of 13C12‐PBB 153 which was added to the extracted lipids before sample purification was commenced ranged from 88–117% (mean value 98.2 ± 8.9%). Nevertheless, IDA analysis of PBBs using 13C12‐labelled congeners is limited by the potential co‐elution of PBBs with polybrominated diphenyl ethers (PBDEs). The pair PBB 153 and BDE 154 was inspected since M+ and [M–2Br]+ ions of 13C12‐PBB 153 and BDE 154 were only separated by 4 u. Gas chromatography/electron ionization high‐resolution mass spectrometry with selected ion monitoring (GC/EI‐HRMS‐SIM) was suitable when m/z 475.7449 and m/z 477.7429 were used for 13C12‐PBB 153 because they are below the monoisotopic peak of the [M–2Br]+ fragment ion of hexaBDEs at m/z 479.7. Gas chromatography/electron capture negative ion tandem mass spectrometry selected reaction monitoring (GC/ECNI‐MS/MS‐SRM) measurements could be applied because 13C12‐PBB 153 and BDE 154 were separated by GC on a 25‐m Factor Four CP‐Sil 8MS column. Comparative measurements with GC/EI‐HRMS‐SIM and GC/ECNI‐MSMS‐SRM were carried out with samples of Tasmanian devils from Tasmania (Australia), an endangered species due to a virus epidemy which has already proved fatal for half of the population. Both techniques verified concentrations of PBB 153 in the range 0.3–11 ng/g lipids with excellent agreement of the levels in all but two samples. The PBB residue pattern demonstrated that PBB pollution originated from the previous discharge with technical hexabromobiphenyl which is dominated by PBB 153. Other congeners such as PBB 132 and PBB 138 were detected in the Tasmanian devils but the proportions relative to PBB 153 were lower than in the technical product. Samples of healthy and affected Tasmanian devils showed no significant difference in the PBB pollution level. The PBB concentrations in the Tasmanian devils were significantly below those causing toxic effects. On the other hand, PBB concentrations were one level or even higher than PBDEs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
母乳中多种含卤持久性有机污染物的联合检测方法   总被引:1,自引:0,他引:1  
建立了母乳中多种含卤持久性有机污染物(POPs)的联合检测方法,目标化合物主要包括六溴环十二烷(HBCDs)、多溴联苯醚(PBDEs)、多氯联苯(PCBs)和有机氯农药(OCPs)等.样品的前处理采用液液萃取、凝胶渗透色谱(GPC)净化和固相萃取(SPE)等技术,目标化合物经气相色谱-质谱联用仪(GC-MS)、液相色谱-三重四极杆串联质谱联用仪(LC-MS/MS)和气相色谱-三重四极杆串联质谱联用仪(GC-MS/MS)等进行检测.样品通过GPC除去脂肪,然后经SPE柱进一步净化并进行多组分分离,极大程度地减小了生物样品中复杂基质的干扰,适合样品量相对较小的人体样本中多种超痕量POPs的分析.应用灵敏度高、选择性更好的GC-MS/MS对样品中的PCBs和OCPs等进行分析,进一步降低基质的干扰.方法经过小牛血清加标实验验证,稳定可靠.POPs的加标回收率分别为88.7%~98.8%(PBDEs), 88.5%~92.5%(HBCDs), 67.9%~82.3%(PCBs)和81.7%~116.1%(OCPs),方法检出限分别为0.13~1.8 pg/mL(PBDEs), 0.31~1.2 pg/mL(HBCDs), 0.22~1.4 pg/mL(PCBs)和0.20~1.5 pg/mL(OCPs).采用本方法对潍坊地区20例母乳样品进行分析,结果显示,潍坊市母乳中HBCDs, PBDEs, PCBs、HCHs和DDTs的中值浓度分别为2.86, 7.76, 8.84、140和503 ng/g 脂重,此浓度水平与国内其它地区人群相当.  相似文献   

4.
This study describes the development of a multiresidue method based on gas chromatography-electron ionization-tandem mass spectrometry (GC-EI-MS/MS) for the detection of sixteen polycyclic aromatic hydrocarbons (PAHs), five phthalate esters (PEs), seven polychlorinated biphenyls (PCBs), six polybrominated diphenyl ethers (PBDEs), six alkylphenols (APs), three organochlorined pesticides and their isomers or degradation products (OCPs) and bisphenol A in seawater, river water, wastewater treatment plant (WWTP) effluents, sediments and mussels. Solid phase extraction (SPE) was used for the extraction of target analytes in aqueous samples, and ultrasound assisted extraction for solid samples. GC-EI-MS/MS acquisition conditions in selected reaction monitoring (SRM) using two transitions per compound were optimized. In this way, quantification and unequivocal identification of organic micropollutants were performed in compliance with the Decision 2002/657/EC. Good linearity responses with coefficients of determination higher than 0.99 were obtained. Methodological detection limits (MDLs) in seawater ranged from 0.1 to 6 ng L(-1); in river water from 0.1 to 4.8 ng L(-1); in WWTP effluents from 1 to 75 ng L(-1); in sediments from 1 to 150 ng g(-1) and in mussels from 1 to 125 ng g(-1). MDLs and recovery yields were compared with other published methods and similarities or even improvements were achieved. The optimized method was applied to analyze five samples from each matrix collected in coastal areas, showing its potential use for marine pollution monitoring.  相似文献   

5.
江丰  余婷婷  李珉  荣茂  韩莉  宋哲  朱晓玲 《色谱》2020,38(7):853-860
建立了加速溶剂萃取同步净化-同位素内标-气相色谱-高分辨质谱同时测定水产品中32种多氯联苯含量的方法。通过在加速溶剂萃取仪中加入2 g无水硫酸钠、1 g弗罗里硅土、50 g中性氧化铝作为吸附剂实现同步净化的效果,萃取溶剂为二氯甲烷-正己烷(1:1,v/v),萃取温度为100℃,循环2次。萃取结束后分别用0.5 mL浓硫酸净化两次,净化液浓缩定容后,采用气相色谱-高分辨质谱测定,同位素内标法定量。32种多氯联苯在0.1~20 μg/L范围内平均相对响应因子(RRF)的相对标准偏差(RSD)值(n=7)均小于15%,定量限(S/N=10)为0.3~1.9 ng/kg。在草鱼和海鲈鱼空白基质中做加标回收试验,添加水平为5、20和50 ng/kg,得到的平均回收率为71.9%~119.0%(n=6),RSD为3.5%~19.6%。该方法背景干扰低,灵敏度高,重现性好,回收率稳定,适用于水产品中多氯联苯的检测。  相似文献   

6.
This article reports the applicability of online gel permeation chromatography (GPC)-GC/MS for the determination of seven predominant polybrominated diphenyl ethers (PBDEs) in eggs to effectively eliminate matrix interference. Selective pressurized liquid extraction using acidic alumina as a fat retainer was used for cleanup of the PBDEs in eggs. It was selected because of its advantages: simpler operation, minimum time spent on sample handing to get fat-free extracts, and low volume of solvent consumption. After concentration, the extract was directly injected for online GC/MS operated in the negative ion chemical ionization mode with a 15 m capillary column. Recoveries of spiked samples were between 75.1 and 102.0%, with RSDs (n=3) ranging from 3.69-11.47% when spiked at levels of 2 and 20 ng/g, dry mass. The LOD varied from 0.25-34 ng/g, dry mass. The proposed method was proven to be rapid, efficient, and reliable for the trace determination of PBDEs in eggs.  相似文献   

7.
An effective multi‐residue pretreatment technique, solid‐phase extraction (SPE) combined with dispersive liquid–liquid microextraction (DLLME), was proposed for the trace analysis of 14 polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in milk samples using gas chromatography–mass spectrometry (GC‐MS). Interesting analytes in milk samples were extracted with hexane after protein precipitation. The hexane extracts were loaded on an LC‐Florisil column to isolate analytes from the milk matrix. The elutes were dried and dissolved in acetone, which was used as the disperser solvent in subsequent DLLME procedures. The effects of several important parameters on the extraction efficiency were evaluated. Under the optimized conditions, a linear relationship was obtained in the range of 0.02–10.00 μg/L (PCBs) and 0.5–100.00 μg/L (PBDEs). The LOD (S/N=3) and relative standard deviations (RSDs, n=5) for all analytes were 0.01–0.4 μg/L and 0.6–8.5%, respectively. The recoveries of the standards added to raw bovine milk samples were 74.0–131.8%, and the repeatabilities of the analysis results were 1.12–17.41%. This method has been successfully applied to estimating PCBs and PBDEs in milk samples.  相似文献   

8.
An improved simple, fast and miniaturized method for the determination of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in freshwater sediment using ultrasonic solvent extraction followed by stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry (USE-SBSE/TD–GC–MS) is presented. The sediment sample (0.2 g) is extracted with methanol (1:1.2, 2:1.0 mL) in an ultrasonic bath (two 5-min extraction cycles). The combined extracts are made up to 5 mL with water, and from the resulting solution, the analytes are preconcentrated on a stir bar coated with polydimethylsiloxane during 1 h of stirring. The loaded sorptive stir bar is then thermally desorbed and online analysed by GC–MS. For the analytes in river sediment, a linear dynamic range of 0.5–50 ng g?1 was established and limits of detection in sub nanogram-per-gram level were achieved. Recoveries and repeatability were obtained in the ranges 62.8–91.5 % and 3.6–15.0 %, respectively. The method accuracy was confirmed by the analysis of PCBs and PBDEs in a certified reference material. The main improvement in comparison with similar published methods is in shortening the sample handling time and the method miniaturization.  相似文献   

9.
The performance of gas chromatography coupled with tandem mass spectrometry (GC/MS/MS) was tested for the simultaneous determination of twelve pyrethroid insecticides. First, a comparison of two different ionization modes, electron ionization (EI) and negative chemical ionization (NCI), was carried out using MS and MS/MS. NCI-MS/MS provided the best results in terms of selectivity and sensitivity giving very low detection limits of 0.11 to 450 fg injected. The reliability of the method was confirmed through the evaluation of quality parameters such as accuracy (70-100%), and repeatability and reproducibility, with coefficients of variation below 15% and 10%, respectively. The applicability of the GC/MS/MS method to real samples and influence of matrix effects were evaluated through the analysis of spiked water, sediment and milk at 0.25 ng L(-1) , 5 ng g(-1) dry weight (dw) and 25 ng g(-1) (dw), respectively, of each pyrethroid insecticide considered. Using GC/NCI-MS/MS, matrix spectral interferences were minimized providing method limits of detection (MLODs) of 0.05-2.59 ng L(-1) , 0.10-87.7 pg g(-1) dw, 2.29-1071 pg g(-1) lipid weight (lw) for water, sediment and milk, respectively. To the best of our knowledge, the MLOD values found in our study were better than those reported in previous studies; in particular for sediment and food samples, they were one order of magnitude lower.  相似文献   

10.
Part of a comprehensive study on the comparison of different extraction methods, GC-MS(/MS) and LC-MS/MS detection methods and modes, for the analysis of soya samples is described in this paper. The validation of an acetone-based extraction method for analysis of 169 pesticides in soya, using LC-MS/MS positive and negative electrospray ionisation (ESI) mode, is reported. Samples (5 g) were soaked with 10 g water and subsequently extracted with 100 mL of a mixture of acetone, dichloromethane and light petroleum (1:1:1), in the presence of 15 g anhydrous sodium sulphate. After centrifugation, aliquots of the extract were evaporated and reconstituted in 1.0 mL of methanol, before direct injection of the final extract (corresponding with 0.05 g soya mL(-1)) into the LC-MS/MS system. Linearity, r(2) of calibration curves, instrument limit of detection/quantitation (LOD/LOQ) and matrix effect were evaluated, based on seven concentrations measured in 6-fold. Good linearity (at least r(2)> or =0.99) of the calibration curves was obtained over the range from 0.1 or 0.25 to 10.0 ng mL(-1), corresponding with pesticide concentrations in soya bean extract of 2 or 5-200 microg kg(-1). Instrument LOD values generally were 0.1 or 0.25 ng mL(-1). Matrix effects were negligible for approximately 90% of the pesticides. The accuracy, precision and method LOQ were determined via recovery experiments, spiking soya at 10, 50, 100 microg kg(-1), six replicates per level. In both ESI modes, method LOQ values were mostly 10 or 50 microg kg(-1) and more than 70% of pesticides analysed by each mode met the acceptability criteria of recovery (70-120%) and RSD (< or =20%), at one or more of the three levels studied. A fast, easy and efficient method with acceptable performance was achieved for a difficult matrix as soya, without cleanup.  相似文献   

11.
建立了同时测定土壤中7种多溴联苯醚(PBDEs)的超声微波协同萃取/气相色谱测定方法.考察了萃取溶剂的种类和用量、微波功率、萃取时间等因素对模拟土壤中PBDEs回收率的影响,得到了最佳萃取条件:萃取剂为50 mL正己烷-丙酮(1:1),微波辐射功率为90W,萃取时间为10 min.在最佳条件下,PB-DEs在10~40...  相似文献   

12.
Synthetic musks are organic compounds used as fragrance additives and fixative compounds in a diversity of personal care products. A new method based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction followed by GC–MS for the analysis of 12 musks in personal care products was developed and validated. Some experimental parameters, such as total QuEChERS mass, sample mass/solvent volume ratio, type of extraction solvent, as well as salts and sorbents amount were investigated and optimized. The final method involves the musks extraction using acetonitrile, followed by the addition of anhydrous magnesium sulphate and sodium acetate. The clean‐up step was performed using dispersive SPE with primary and secondary amine and octadecyl–silica sorbents. This extraction procedure is fast (about 10 min) when compared to other traditional approaches. The method was robust for the matrices studied and shows a high precision (%RSD < 15%) and accuracy (average recovery of 85%), allowing the detection of musks in minimum concentrations between 0.01 ng/g (galaxolide) and 15.80 ng/g (musk xylene). The developed method was applied to the analysis of 12 samples, which revealed musks concentrations ranging from 2 ng/g (toothpaste) to 882 340 ng/g (perfumed body lotion).  相似文献   

13.
A gas chromatography/ion trap mass spectrometry (GC/ITMS) method was developed for the determination of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in harbor seal (Phoca vitulina) tissues. Tissue samples were homogenized, lyophilized and fortified with (13)C-PCBs 28, 123, 169 and 170, and then extracted with an accelerated solvent extractor with a mixture of hexane and methylene chloride (1:1, v/v). After lipid removal using a 40% H(2)SO(4)-modified silica gel column, all organochlorines were collected in one fraction and further fractionated with an activated carbon/silica gel (1:20) column into a first fraction containing OCPs, non-coplanar PCBs and (13)C-PCBs 28, 123 and 170, and a second containing PCNs, coplanar PCBs and (13)C-PCB 169. Prior to GC/MS/MS analysis, (13)C-PCB 169 was added into the first fraction as an injection standard and (13)C-PCB 170 into the second fraction to calibrate the recoveries of the fortified internal standards. This method can effectively eliminate matrix interferences, and has high selectivity and sensitivity. Recoveries averaged 45-86% for OCPs with relative standard deviations (RSDs) of 2-14%, 52-137% for PCBs with RSDs of 3-29% and 36-152% for PCNs with RSDs of 7-29% from lard and chicken heart samples, which were used as alternative matrices to harbor seal samples in recovery studies. The limits of detection for OCPs, PCBs and PCNs were 0.7-1.9, 1.5-8.9 and 0.5-10 pg/g dry weight, respectively. This method can be used to analyze OCPs, PCBs and PCNs in harbor seal blubber, liver and kidney samples.  相似文献   

14.
A method has been developed and validated for the concurrent extraction, clean‐up, and analysis of polybrominated diphenyl ethers (PBDEs), α‐, β‐, and γ‐hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA) in human milk and serum. Milk and serum samples were extracted using accelerated solvent extraction with acetone/hexane 1:1, v/v and liquid–liquid extraction with methyl‐tert‐butyl ether/hexane 1:1, v/v, respectively. The removal of co‐extracted biogenic materials was achieved by gel permeation chromatography followed by sulfuric acid treatment. The fractionation of the PBDEs and HBCD/TBBPA was performed using a Supelco LC‐Si SPE cartridge. The detection of the PBDEs was then performed by GC–MS and that of the HBCDs and the TBBPA was performed using UPLC–MS/MS. The pretreatment procedure was optimized, and the characteristic ions and fragmentation of the analytes were studied by MS or MS/MS. A recovery test was performed using a matrix spiking test at concentrations of 0.05–10 ng/g. The recoveries ranged from 78.6–108.8% with RSDs equal to or lower than 14.04%. The LODs were 1.8–60 pg/g. The usefulness of the developed method was tested by the analysis of real human samples, and several brominated flame retardants in different samples were detected and analyzed.  相似文献   

15.
Enantioselective determination of the atropisomers of 2,2',3,4',5',6-hexabromobiphenyl (PBB 149) in a purified sample from a bird egg was attempted in this work. By application of the classic method for PBB determination, i.e. gas chromatography coupled to electron capture negative ionization mass spectrometry (GC/ECNI-MS) using the bromide ions, the enantiomers interfered with another brominated compound. Subsequent measurements clarified that this interference did not occur in the mass chromatogram of the molecular ion of PBB 149. Therefore, a GC/ECNI tandem mass spectrometry (MS/MS) method was developed, based on the fragmentation of [M]-. A suitable precursor-product ion transition was found for m/z 627.5 --> 80 +/- 1.5, representing the most abundant ion trace of the molecular ion and the bromide ions. Optimization of the ion source temperature, the methane gas pressure, and the collision voltages resulted in a robust method that could solve the problem. Subsequent injections of a technical PBB product (Firemaster BP-6) resulted in the anticipated racemic proportion (enantiomer fraction (EF) = 0.50 +/- 0.02 (n = 8)). By contrast, the EF in the purified extract of a bird egg was found to be 0.42 +/- 0.02 (n = 10), indicative of a significant enantioenrichment of the second eluting atropisomer. Additional measurements were performed on a non-chiral column. These measurements allowed for the detection of 16 hexabromobiphenyls (hexa-BBs) in Firemaster BP-6. These comparisons verified that PBB 149 enantiomers did not interfere with an isomer that could falsify the enantiomer fraction in the sample. The novel method using GC/ECNI-MS/MS in the selected reaction monitoring (SRM) mode was eight times more sensitive than application of conventional GC/ECNI-MS selected ion monitoring (SIM) analysis of the molecular ion.  相似文献   

16.
A method for the analysis of chlorotoluenes (CTs) in soil has been developed based on ultrasonic assisted extraction with a low volume of organic solvent and determination by gas chromatography-tandem mass spectrometry (GC–MS/MS). A simultaneous clean-up on an alumina–anhydrous sodium sulphate mixture was carried out to remove soil interferences. However, an additional clean-up with graphitised carbon was needed for some very dirty samples. Several solvents were assayed and a mixture of ethyl acetate:hexane (80?:?20, v/v) was selected to carry out soil extractions. Recovery studies were performed at 0.2, 0.1, 0.05 and 0.02?ng?g?1 fortification levels, and recoveries obtained for all the compounds and concentrations were higher than 81% with standard deviations fulfilling the requirements of the IUPAC. LODs from 0.7 to 5.2?ng?kg?1 and LOQs from 2.2 to 17.5?ng?kg?1 were achieved for the analysed compounds, being pentachlorotoluene the compound with the highest limits, followed by the monochlorinated toluenes. The proposed analytical method was applied to determine CT levels in agricultural and industrial soils. These compounds were found in all the industrial soils analysed and some CTs were present in agricultural soils at lower levels.  相似文献   

17.
A modification that entails the use of buffering during extraction was made to further improve results for certain problematic pesticides (e.g., folpet, dichlofluanid, chlorothalonil, and pymetrozine) in a simple, fast, and inexpensive method for the determination of pesticides in produce. The method, known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residues in foods, now involves the extraction of the sample with acetonitrile (MeCN) containing 1% acetic acid (HAc) and simultaneous liquid-liquid partitioning formed by adding anhydrous MgSO4 plus sodium acetate (NaAc). The extraction method is carried out by shaking a centrifuge tube which contains 1 mL of 1% HAc in MeCN plus 0.4 g anhydrous MgSO4 and 0.1 g anhydrous NaAc per g sample. The tube is then centrifuged, and a portion of the extract is transferred to a tube containing 50 mg primary secondary amine sorbent plus 150 mg anhydrous MgSO4/mL of extract. After a mixing and centrifugation step, the extract is transferred to autosampler vials for concurrent analysis by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry. Independent of the original sample pH, the use of buffering during the extraction yields pH <4 in the MeCN extract and >5 in the water phase, which increases recoveries of both acid- and base-sensitive pesticides. The method was evaluated for 32 diverse pesticides in different matrixes, and typical percent recoveries were 95 +/- 10, even for some problematic pesticides. Optional solvent exchange to toluene prior to GC/MS analysis was also evaluated, showing equally good results with the benefit of lower detection limits, but at the cost of more time, material, labor, and expense.  相似文献   

18.
建立了纸张中的20种芳香胺的分散固相萃取/气相色谱-三重四极杆串联质谱分析方法。纸张中的偶氮染料于(70±2)℃经预处理后还原为芳香胺,向反应后的悬浮液中先加入4 mL 10 mol/L氢氧化钠溶液,将pH值由弱酸性调至碱性,再加入0.5 mL的3内标(氘代萘、2,4,5-三氯苯胺和氘代蒽)工作溶液、10 mL的叔丁基甲醚,最后加入15 g无水硫酸钠除水,振摇40 min萃取芳香胺。萃取液经分散固相萃取试剂盒(d-SPE)进一步净化、离心后,取上层清液以气相色谱-三重四极杆串联质谱法(GC-MS/MS),在多反应离子监测(MRM)模式下检测,内标法定量。目标物在各自浓度范围内线性关系良好(r~20.99),在10、20、50 ng/mL 3个加标水平下的回收率为80.7%~128%,相对标准偏差(RSDs)为0.79%~6.5%,检出限(LOD)为0.05~2.1 ng/mL,定量下限(LOQ)为0.18~5.5 ng/mL。该方法简便快捷,灵敏度高,可用于纸张中芳香胺的快速检测。  相似文献   

19.
Environmental chemists have been challenged for over 30 years to analyse complex mixtures of halogenated organic pollutants like polychlorinated biphenyls (PCBs), polychlorinated alkanes (PCAs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and polychlorinated furans (PCDD/Fs). Gas chromatography (GC) often proved to be the method of choice because of its high resolution. The recent developments in the field of comprehensive two-dimensional GC (GCxGC) show that this technique can provide much more information than conventional (single-column) GC. Large volume injection (e.g. by programmed temperature vaporiser, or on-column injection) can be employed for the injection of tens of microliters of sample extract, in that way substantially improving the detection limits. Electron-capture detection (ECD) is a sensitive detection method but unambiguous identification is not possible and misidentification easily occurs. Mass spectrometric (MS) detection substantially improves the identification and the better the resolution (as with MS/MS, time-of-flight (TOF) MS and high-resolution (HR)MS), the lower the chances of misidentification are. Unfortunately, this comes only with substantially higher investments and maintenance costs. Co-extracted lipids, sulphur and other interferences can disturb the GC separation and detection leading to unreliable results. Extraction, and more so, sample clean-up and fractionation, are crucial steps prior to the GC analysis of these pollutants. Recent developments in sample extraction and clean-up show that selective pressurised liquid extraction (PLE) is an effective and efficient extraction and clean-up technique that enables processing of multiple samples in less than 1h. Quality assurance tools such as interlaboratory studies and reference materials are very well established for PCDD/Fs and PCBs but the improvement of that infrastructure is needed for brominated flame retardants, PCAs and toxaphene.  相似文献   

20.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号