首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Houyi Yu  Tongsuo Wu 《代数通讯》2013,41(3):1076-1097
Let R be a commutative ring with identity. The set 𝕀(R) of all ideals of R is a bounded semiring with respect to ordinary addition, multiplication and inclusion of ideals. The zero-divisor graph of 𝕀(R) is called the annihilating-ideal graph of R, denoted by 𝔸𝔾(R). We write 𝒢 for the set of graphs whose cores consist of only triangles. In this paper, the types of the graphs in 𝒢 that can be realized as either the zero-divisor graphs of bounded semirings or the annihilating-ideal graphs of commutative rings are determined. A necessary and sufficient condition for a ring R such that 𝔸𝔾(R) ∈ 𝒢 is given. Finally, a complete characterization in terms of quotients of polynomial rings is established for finite rings R with 𝔸𝔾(R) ∈ 𝒢. Also, a connection between finite rings and their corresponding graphs is realized.  相似文献   

2.
The zero-divisor graph of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy=0. In this paper, a decomposition theorem is provided to describe weakly central-vertex complete graphs of radius 1. This characterization is then applied to the class of zero-divisor graphs of commutative rings. For finite commutative rings whose zero-divisor graphs are not isomorphic to that of Z4[X]/(X2), it is shown that weak central-vertex completeness is equivalent to the annihilator condition. Furthermore, a schema for describing zero-divisor graphs of radius 1 is provided.  相似文献   

3.
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)?{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.  相似文献   

4.
Ivana Božić 《代数通讯》2013,41(4):1186-1192
We investigate the properties of (directed) zero-divisor graphs of matrix rings. Then we use these results to discuss the relation between the diameter of the zero-divisor graph of a commutative ring R and that of the matrix ring M n (R).  相似文献   

5.
A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G c * be the subgraph of G induced on the vertex set V (G)\ {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G = Γ(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G c * has at least two connected components. We prove that the diameter of the induced graph G c * is two if Z(R)2 ≠ {0}, Z(R)3 = {0} and G c * is connected. We determine the structure of R which has two distinct nonadjacent vertices α, βZ(R)* \ {c} such that the ideal [N(α) ∩ N(β)]∪ {0} is generated by only one element of Z(R)*\{c}. We also completely determine the correspondence between commutative rings and finite complete graphs K n with some end vertices adjacent to a single vertex of K n .  相似文献   

6.
Let R be a ring, which is either a ring of integers or a field of zero characteristic. For every finite graph Γ, we construct an R-arithmetic linear group H(Γ). The group H(Γ) is realized as the factor automorphism group of a partially commutative class two nilpotent R-group G Γ. Also we describe the structure of the entire automorphism group of a partially commutative nilpotent R-group of class two.  相似文献   

7.
8.
A graph Γ is said to be End-regular if its endomorphism monoid End(Γ) is regular. D. Lu and T. Wu [25 Lu, D., Wu, T. (2008). On endomorphism-regularity of zero-divisor graphs. Discrete Math. 308:48114815.[Crossref], [Web of Science ®] [Google Scholar]] posed an open problem: Given a ring R, when does the zero-divisor graph Γ(R) have a regular endomorphism monoid? and they solved the problem for R a commutative ring with at least one nontrivial idempotent. In this paper, we solve this problem for zero-divisor graphs of group rings.  相似文献   

9.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

10.
LetΓ be a class of countable graphs, and let ℱ(Γ) denote the class of all countable graphs that do not contain any subgraph isomorphic to a member ofΓ. Furthermore, let and denote the class of all subdivisions of graphs inΓ and the class of all graphs contracting to a member ofΓ, respectively. As the main result of this paper it is decided which of the classes ℱ(TK n ) and ℱ(HK n ),n≦ℵ0, contain a universal element. In fact, for ℱ(TK 4)=ℱ(HK 4) a strongly universal graph is constructed, whereas for 5≦n≦ℵ0 the classes ℱ(TK n ) and ℱ(HK n ) have no universal elements. Dedicated to Klaus Wagner on his 75th birthday  相似文献   

11.
For a commutative ring R with set of zero-divisors Z(R), the zero-divisor graph of R is Γ(R)=Z(R)−{0}, with distinct vertices x and y adjacent if and only if xy=0. In this paper, we show that Γ(T(R)) and Γ(R) are isomorphic as graphs, where T(R) is the total quotient ring of R, and that Γ(R) is uniquely complemented if and only if either T(R) is von Neumann regular or Γ(R) is a star graph. We also investigate which cardinal numbers can arise as orders of equivalence classes (related to annihilator conditions) in a von Neumann regular ring.  相似文献   

12.
13.
Tongsuo Wu  Dancheng Lu   《Discrete Mathematics》2008,308(22):5122-5135
In this paper we study sub-semigroups of a finite or an infinite zero-divisor semigroup S determined by properties of the zero-divisor graph Γ(S). We use these sub-semigroups to study the correspondence between zero-divisor semigroups and zero-divisor graphs. In particular, we discover a class of sub-semigroups of reduced semigroups and we study properties of sub-semigroups of finite or infinite semilattices with the least element. As an application, we provide a characterization of the graphs which are zero-divisor graphs of Boolean rings. We also study how local property of Γ(S) affects global property of the semigroup S, and we discover some interesting applications. In particular, we find that no finite or infinite two-star graph has a corresponding nil semigroup.  相似文献   

14.
We consider zero-divisor graphs of idealizations of commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the zero-divisor graph of a ring when extending to idealizations of the ring.  相似文献   

15.
Let V be an n-dimensional vector space (4≤n<∞) and let Gk(V){\mathcal{G}}_{k}(V) be the Grassmannian formed by all k-dimensional subspaces of V. The corresponding Grassmann graph will be denoted by Γ k (V). We describe all isometric embeddings of Johnson graphs J(l,m), 1<m<l−1 in Γ k (V), 1<k<n−1 (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of J(n,k) in Γ k (V) is an apartment of Gk(V){\mathcal{G}}_{k}(V) if and only if n=2k. Our second result (Theorem 5) is a classification of rigid isometric embeddings of Johnson graphs in Γ k (V), 1<k<n−1.  相似文献   

16.
Let R be a commutative ring with nonzero identity and Z(R) its set of zero-divisors. The zero-divisor graph of R is Γ(R), with vertices Z(R)?{0} and distinct vertices x and y are adjacent if and only if xy = 0. For a proper ideal I of R, the ideal-based zero-divisor graph of R is Γ I (R), with vertices {x ∈ R?I | xy ∈ I for some y ∈ R?I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we study the relationship between the two graphs Γ(R) and Γ I (R). We also determine when Γ I (R) is either a complete graph or a complete bipartite graph and investigate when Γ I (R) ? Γ(S) for some commutative ring S.  相似文献   

17.
The zero-divisor graph of a commutative semigroup   总被引:5,自引:0,他引:5  
An undirected graph Γ(S) is associated to each commutative multiplicative semigroup S with 0. The vertices of the graph are labeled by the nonzero zero-divisors of S , and two vertices x,y are connected by an edge in case xy = 0 in S . The properties and possible structures of the graph Γ (S) are studied.  相似文献   

18.
A. M. Rahimi 《代数通讯》2013,41(5):1989-2004
Let R be a commutative ring with identity 1 ≠ 0. A nonzero element a in R is said to be a Smarandache zero-divisor if there exist three different nonzero elements x, y, and b (≠ a) in R such that ax = ab = by = 0, but xy ≠ 0. We will generalize this notion to the Smarandache vertex of an arbitrary simple graph and characterize the Smarandache zero-divisors of commutative rings (resp. with respect to an ideal) via their associated zero-divisor graphs. We illustrate them with examples and prove some interesting results about them.  相似文献   

19.
A near-polygonal graph is a graph Γ which has a set C\mathcal{C} of m-cycles for some positive integer m such that each 2-path of Γ is contained in exactly one cycle in C\mathcal{C}. If m is the girth of Γ, then the graph is called polygonal. We provide a construction of an infinite family of polygonal graphs of arbitrary even girth with 2-arc transitive automorphism groups, showing that there are infinitely many 2-arc transitive polygonal graphs of every girth.  相似文献   

20.
Let A be a commutative ring with nonzero identity, 1 ≤ n < ∞ be an integer, and R = A × A × … ×A (n times). The total dot product graph of R is the (undirected) graph TD(R) with vertices R* = R?{(0, 0,…, 0)}, and two distinct vertices x and y are adjacent if and only if x·y = 0 ∈ A (where x·y denote the normal dot product of x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices Z(R)* = Z(R)?{(0, 0,…, 0)}. It follows that each edge (path) of the classical zero-divisor graph Γ(R) is an edge (path) of ZD(R). We observe that if n = 1, then TD(R) is a disconnected graph and ZD(R) is identical to the well-known zero-divisor graph of R in the sense of Beck–Anderson–Livingston, and hence it is connected. In this paper, we study both graphs TD(R) and ZD(R). For a commutative ring A and n ≥ 3, we show that TD(R) (ZD(R)) is connected with diameter two (at most three) and with girth three. Among other things, for n ≥ 2, we show that ZD(R) is identical to the zero-divisor graph of R if and only if either n = 2 and A is an integral domain or R is ring-isomorphic to ?2 × ?2 × ?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号