首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a magnetic impurity coupled to both fermionic quasiparticles with a pseudogap density of states and bosonic spin fluctuations. Using renormalization group and large-N calculations we investigate the phase diagram of the resulting Fermi-Bose Kondo model. We show that the Kondo temperature is strongly reduced by low-energy spin fluctuations, and make connections to experiments in cuprate superconductors. Furthermore, we derive an exact exponent for the critical behavior of the conduction electron T matrix, and propose our findings to be relevant for certain scenarios of local quantum criticality in heavy-fermion metals.  相似文献   

2.
3.
We present a series of rigorous examples of the Kondo lattice model that exhibit full ferromagnetism in the ground state. The models are defined in one-, two- and three-dimensional lattices, and are characterized by a range of hopping terms, specific electron filling, and large ferromagnetic coupling. Our examples show that a sufficient strong but finite exchange coupling between conduction electrons and localized spins could overcome the competition from mobility of a finite density of electrons and drive the system from a paramagnetic phase to a ferromagnetic phase. We also establish a relation of ferromagnetism between the Hubbard model and Kondo lattice model. Meanwhile some rigorous results on ferromagnetism in the corresponding Hubbard model are presented. Received: 10 September 1997 / Revised: 15 October 1997 / Accepted: 17 October 1997  相似文献   

4.
5.
The successive spectral evolution of the Kondo resonance state was investigated from a single iron(II) phthalocyanine molecule to the two-dimensional lattice on Au(111) by interrogating the individual molecules with a scanning tunneling microscope. A sharp Kondo peak appears in the single-impurity regime, which broadens and splits as the lattice builds up. The origin of spectral evolution together with the electronic ground state of the lattice are discussed based on the competition of the Kondo effect and Rudermann-Kittel-Kasuya-Yosida coupling between the molecular spins.  相似文献   

6.
The unique linear density of state around the Dirac points for the honeycomb lattice brings much novel features in strongly correlated models. Here we study the ground-state phase diagram of the Kondo lattice model on the honeycomb lattice at half-filling by using an extended mean-field theory. By treating magnetic interaction and Kondo screening on an equal footing, it is found that besides a trivial discontinuous first-order quantum phase transition between well-defined Kondo insulator and antiferromagnetic insulating state, there can exist a wide coexistence region with both Kondo screening and antiferromagnetic orders in the intermediate coupling regime. In addition, the stability of Kondo insulator requires a minimum strength of the Kondo coupling. These features are attributed to the linear density of state, which are absent in the square lattice. Furthermore, fluctuation effect beyond the mean-field decoupling is analyzed and the corresponding antiferromagnetic spin-density-wave transition falls into the O(3) universal class. Comparatively, we also discuss the Kondo necklace and the Kane-Mele-Kondo (KMK) lattice models on the same lattice. Interestingly, it is found that the topological insulating state is unstable to the usual antiferromagnetic ordered states at half-filling for the KMK model. The present work may be helpful for further study on the interplay between conduction electrons and the densely localized spins on the honeycomb lattice.  相似文献   

7.
We develop a new theoretical approach to study the coherent state in the Kondo lattice. A renormalization operator is introduced to reflect the many-body interactions. A characteristic temperature, below which the system enters a coherent state (i.e., heavy-fermion state), is obtained, and this is in agreement with the recent theoretical result derived from a different method.  相似文献   

8.
We review the magnetic properties of the Konso lattice model using the functional integral technique: we discuss the magnetic and non-magnetic phases, and some properties of these phases. Comparison with other calculations is also made. Finally some open questions are discussed.  相似文献   

9.
Magnetization measurements have been performed on a single crystal of CeCu6 along the three main crystallographic directions between 1.5 and 300 K. The results are interpreted in terms of a crystal field calculation slightly modified by a spin fluctuation contribution of Kondo origin. Anisotropic magnetic properties of the Kondo lattice are discussed.  相似文献   

10.
The α-γ transition of Ce and its compounds are explained within a compressible Kondo lattice model where the variation of |J|/D with volume is taken into account. We show that, contrary to the valence change model, the Kondo contribution is sufficient to induce a first order transition at low temperature from a magnetic to a Kondo phase. The disappearance of magnetism is then related to an extremely high Kondo temperature. Applications to Ce and CeAl2 cases are given.  相似文献   

11.
12.
Motivated by recent experiments on Yb-doped CeCoIn5, we study the effect of correlated disorder in a Kondo lattice. Correlations between the impurities are considered at the two-particle level. We use a mean-field theory approximation for the Anderson lattice model to calculate how the emergence of coherence in the Kondo lattice is impacted by correlations between impurities. We show that the rate at which disorder suppresses coherence temperature depends on the length of the impurity correlations. As the impurity concentration increases, we generally find that the suppression of coherence temperature is significantly reduced. The results are discussed in the context of available experimental data.  相似文献   

13.
A simple approach to the coherence effects in the Kondo lattice is presented, using the functional integral method. We show the existence of a coherence temperature Tc smaller than TK, below which coherence between impurities appears. The density of states is calculated in an approximation which takes into account coherent and incoherent scattering. We also show how the thermodynamic properties reflect the coherence effects.  相似文献   

14.
An Anderson model with N-fold degeneracy in the Kondo regime is considered. It is presumed that the electron-electron correlations in the system of f electrons have their maximum strength. A criterion for instability against the formation of a weakly antiferromagnetic phase superposed on the Kondo state is obtained by the auxiliary-boson method using the 1/N expansion. An effective interaction leading to the formation of magnetic ordering appears because of the spin fluctuations in the system of localized electrons. The phase diagram of the system is constructed. Zh. éksp. Teor. Fiz. 111, 600–614 (February 1997)  相似文献   

15.
Renormalization group analysis of the Kondo model with a logarithmic Van Hove singularity in the electron density of states has been carried out in the next-to-leading scaling approximation in different magnetic phases. The effective coupling constant remains small, while the renormalized magnetic moment and the frequency of spin fluctuations decrease by several orders of magnitude. In this way, broad regions of non-Fermi-liquid behavior are found from scaling trajectories in a large interval of the bare coupling constant. Applications to the physics of itinerant magnetism are considered.  相似文献   

16.
17.
The one-dimensional Kondo lattice model is investigated by means of Wegner's flow equation method. The renormalization procedure leads to an effective Hamiltonian which describes a free one-dimensional electron gas and a Heisenberg chain. The localised spins of the effective model are coupled by the well-known RKKY interaction. They are treated within a Schwinger boson mean field theory which permits the calculation of static and dynamic correlation functions. In the regime of small interaction strength static expectation values agree well with the expected Luttinger liquid behaviour. The parameter Kρ of the Luttinger liquid theory is estimated and compared to recent results from density matrix renormalization group studies.  相似文献   

18.
We investigate the competition between magnetic order and local Kondo effect in a Kondo lattice model (i.e. the Coqblin-Schrieffer Hamiltonian extended to a lattice) in a mean-field approximation, taking account of the spin-orbit degeneracy of each localized f level. This leads to the definition of a dependent Kondo temperature. We study the Kondo phase and compare its energy with the energies of magnetic phases, when the number of the conduction band electron per site is near one. We present a phase diagram which shows the occurrence of three phases: Kondo, antiferromagnetic and paramagnetic phases. Our model in the mean-field approximation also shows a somewhat flat Kondo temperature, for large values of , as a function of the exchange coupling J between conduction and localized f electrons. Finally we show some scaling effects between and J and we define a corresponding Kondo temperature. Received 21 September 1998 and Received in final form 8 February 1999  相似文献   

19.
Magnetic adatoms in the honeycomb lattice have received tremendous attention due to the interplay between Ruderman–Kittel–Kasuya–Yosida interaction and Kondo coupling leading to very rich physics. Here we study the competition between the antiferromagnetism and Kondo screening of local moments by the conduction electrons on the honeycomb lattice using the determinant quantum Monte Carlo method. While changing the interband hybridization V, we systematically investigate the antiferromagnetic-order state and the Kondo singlet state transition, which is characterized by the behavior of the local moment, antiferromagnetic structure factor, and the short range spin-spin correlation. The evolution of the single particle spectrum are also calculated as a function of hybridization V, we find that the system presents a small gap in the antiferromagnetic-order region and a large gap in the Kondo singlet region in the Fermi level. We also find that the localized and itinerant electrons coupling leads to the midgap states in the conduction band in the Fermi level at very small V. Moreover, the formation of antiferromagnetic order and Kondo singlet are studied as on-site interaction U or temperature T increasing, we have derived the phase diagrams at on-site interaction U(or temperature T) and hybridization V plane.  相似文献   

20.
A theory of stabilization of a spin liquid in a Kondo lattice at temperatures close to the temperature of antiferromagnetic instability has been developed. Kondo exchange scattering of conduction electrons leads to emergence of a state of the spin liquid of the resonating valence bonds (RVB) type at T>T K. Owing to this stabilization, low-energy processes of Kondo scattering with energies below T K are frozen so that the “singlet” state of the Kondo lattice is not realized; instead a strongly correlated spin liquid with developed antiferromagnetic fluctuations occurs. A new version of the Feynman diagram technique has been developed to describe interaction between spin fluctuations and resonant valence bonds in a self-consistent manner. Emergence of a strongly anisotropic RVB spin liquid is discussed. Zh. éksp. Teor. Fiz. 112, 729–759 (August 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号