首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a graph G on n vertices and a field F, the minimum rank of G over F, written as mrF(G), is the smallest possible rank over all n×n symmetric matrices over F whose (i,j)th entry (for ) is nonzero whenever ij is an edge in G and is zero otherwise. The maximum nullity of G over F is MF(G)=n-mrF(G). The minimum rank problem of a graph G is to determine mrF(G) (or equivalently, MF(G)). This problem has received considerable attention over the years. In [F. Barioli, W. Barrett, S. Butler, S.M. Cioab?, D. Cvetkovi?, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovi?, H. van der Holst, K.V. Meulen, A.W. Wehe, AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648], a new graph parameter Z(G), the zero forcing number, was introduced to bound MF(G) from above. The authors posted an attractive question: What is the class of graphs G for which Z(G)=MF(G) for some field F? This paper focuses on exploring the above question.  相似文献   

2.
The complexity status of Pendants-median spanning tree problem is an open problem. Using the complexity of the X3C problem, the paper proves that Pendants-median spanning tree problem is NP-complete. Global-median spanning tree problem is a related problem. Using the complexity of 3SAT, the paper proves that this problem is also NP-complete, and a polynomial -time algorithm to this problem is given, whose time complexity is O(n^3).  相似文献   

3.
The prize-collecting generalized minimum spanning tree problem (PC-GMSTP), is a generalization of the generalized minimum spanning tree problem (GMSTP) and belongs to the hard core of -hard problems. We describe an exact exponential time algorithm for the problem, as well we present several mixed integer and integer programming formulations of the PC-GMSTP. Moreover, we establish relationships between the polytopes corresponding to their linear relaxations and present an efficient solution procedure that finds the optimal solution of the PC-GMSTP for graphs with up 240 nodes.  相似文献   

4.
5.
The average distance μ(G) of a connected graph G of order n is the average of the distances between all pairs of vertices of G, i.e., μ(G) = ()−1 Σ{x,y}⊂V(G) dG(x, y), where V(G) denotes the vertex set of G and dG(x, y) is the distance between x and y. We prove that every connected graph of order n and minimum degree δ has a spanning tree T with average distance at most . We give improved bounds for K3‐free graphs, C4‐free graphs, and for graphs of given girth. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 1–13, 2000  相似文献   

6.
In this paper, we give the upper bound and lower bound ofk-th largest eigenvalue λk of the Laplacian matrix of a graphG in terms of the edge number ofG and the number of spanning trees ofG. This research is supported by the National Natural Science Foundation of China (Grant No.19971086) and the Doctoral Program Foundation of State Education Department of China.  相似文献   

7.
8.
A spanning tree of a properly edge-colored complete graph, Kn, is rainbow provided that each of its edges receives a distinct color. In 1996, Brualdi and Hollingsworth conjectured that if K2m is properly (2m?1)-edge-colored, then the edges of K2m can be partitioned into m rainbow spanning trees except when m=2. By means of an explicit, constructive approach, in this paper we construct ?6m+93? mutually edge-disjoint rainbow spanning trees for any positive value of m. Not only are the rainbow trees produced, but also some structure of each rainbow spanning tree is determined in the process. This improves upon best constructive result to date in the literature which produces exactly three rainbow trees.  相似文献   

9.
10.
The minimum semidefinite rank (msr) of a graph is defined to be the minimum rank among all positive semidefinite matrices whose zero/nonzero pattern corresponds to that graph. We recall some known facts and present new results, including results concerning the effects of vertex or edge removal from a graph on msr.  相似文献   

11.
12.
This paper describes an attribute based tabu search heuristic for the generalized minimum spanning tree problem (GMSTP) known to be NP-hard. Given a graph whose vertex set is partitioned into clusters, the GMSTP consists of designing a minimum cost tree spanning all clusters. An attribute based tabu search heuristic employing new neighborhoods is proposed. An extended set of TSPLIB test instances for the GMSTP is generated and the heuristic is compared with recently proposed genetic algorithms. The proposed heuristic yields the best results for all instances. Moreover, an adaptation of the tabu search algorithm is proposed for a variation of the GMSTP in which each cluster must be spanned at least once.  相似文献   

13.
We show that a k‐edge‐connected graph on n vertices has at least spanning trees. This bound is tight if k is even and the extremal graph is the n‐cycle with edge multiplicities . For k odd, however, there is a lower bound , where . Specifically, and . Not surprisingly, c3 is smaller than the corresponding number for 4‐edge‐connected graphs. Examples show that . However, we have no examples of 5‐edge‐connected graphs with fewer spanning trees than the n‐cycle with all edge multiplicities (except one) equal to 3, which is almost 6‐regular. We have no examples of 5‐regular 5‐edge‐connected graphs with fewer than spanning trees, which is more than the corresponding number for 6‐regular 6‐edge‐connected graphs. The analogous surprising phenomenon occurs for each higher odd edge connectivity and regularity.  相似文献   

14.
We present a new representation of a chordal graph called the clique-separator graph, whose nodes are the maximal cliques and minimal vertex separators of the graph. We present structural properties of the clique-separator graph and additional properties when the chordal graph is an interval graph, proper interval graph, or split graph. We also characterize proper interval graphs and split graphs in terms of the clique-separator graph. We present an algorithm that constructs the clique-separator graph of a chordal graph in O(n3) time and of an interval graph in O(n2) time, where n is the number of vertices in the graph.  相似文献   

15.
Summary A family of highly efficient designs in the sence of theE-criterion is herein described. These designs have strictly betterE-performance than regular graph designs, yet the off-diagonal entries of theirC-matrix differ by as much as two. Some counterexamples to conjectures in experimental design are then supplied. Asymptotic behavior and equivalence of theA- andD-criteria under a certain condition of uniqueness are analyzed as well.  相似文献   

16.
将W.T.Tultte提出的计算有向图中以某点为根的支撑出树数目的公式推广到了更一般的情况,并给出了有向图中具有不同特点的支撑树数目的计算公式。  相似文献   

17.
Broadcasting is the process of information dissemination in a communication network in which a message, originated by one member, is transmitted to all members of the network. A broadcast graph is a graph which permits broadcasting from any originator in minimum time. The broadcast function B(n) is the minimum number of edges in any broadcast graph on n vertices. In this paper, we construct a broadcast graph on 26 vertices with 42 edges to prove B(26) = 42.  相似文献   

18.
This paper proposes a GRASP (Greedy Randomized Adaptive Search Procedure) algorithm for the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem a vector of costs is defined for each edge of the graph and the problem is to find all Pareto optimal or efficient spanning trees (solutions). The algorithm is based on the optimization of different weighted utility functions. In each iteration, a weight vector is defined and a solution is built using a greedy randomized constructive procedure. The found solution is submitted to a local search trying to improve the value of the weighted utility function. We use a drop-and-add neighborhood where the spanning trees are represented by Prufer numbers. In order to find a variety of efficient solutions, we use different weight vectors, which are distributed uniformly on the Pareto frontier. The proposed algorithm is tested on problems with r=2 and 3 criteria. For non-complete graphs with n=10, 20 and 30 nodes, the performance of the algorithm is tested against a complete enumeration. For complete graphs with n=20, 30 and 50 nodes the performance of the algorithm is tested using two types of weighted utility functions. The algorithm is also compared with the multi-criteria version of the Kruskal’s algorithm, which generates supported efficient solutions. This work was funded by the Municipal Town Hall of Campos dos Goytacazes city. The used computer was acquired with resource of CNPq.  相似文献   

19.
We study the height of a spanning tree T of a graph G obtained by starting with a single vertex of G and repeatedly selecting, uniformly at random, an edge of G with exactly one endpoint in T and adding this edge to T.  相似文献   

20.
. We introduce the concept of a characterization set for the nucleolus of a cooperative game and develop sufficient conditions for a collection of coalitions to form a characterization set thereof. Further, we formalize Kopelowitz's method for computing the nucleolus through the notion of a sequential LP process, and derive a general relationship between the size of a characterization set and the complexity of computing the nucleolus. Received May 1994/Revised version May 1997/Final version February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号