共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures
Nitin Chopra Leslie Claypoole Leonidas G. Bachas 《Journal of nanoparticle research》2010,12(8):2883-2893
Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6–40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems. 相似文献
2.
J. Martín‐Sánchez A. Chahboun M. J. M. Gomes A. G. Rolo B. Pivac I. Capan 《固体物理学:研究快报》2012,6(5):223-225
In this work, we report on the electrical characterization of Ge nanoparticles (NPs) produced by pulsed laser deposition (PLD) at room temperature (RT) in Ar gas inert atmosphere using a shadowed off‐axis deposition geometry. Our results show that functional thin films of crystalline Ge NPs embedded between thin alumina films can be obtained on p‐type Si(100) substrates following a low temperature and short rapid thermal annealing (RTA) treatment. Metal–oxide–semiconductor (MOS) structures with and without Ge NPs embedded in the alumina were prepared for the electrical measurements. The results indicate a strong memory effect at relatively low programming voltages (±4 V) due to the presence of Ge NPs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
具有核/壳结构的磁性复合纳米材料是十分重要的功能材料,其综合物性受材料微结构的影响,而这很大程度上又取决于复合体系的可控合成.本文综述了近二十年来有关核/壳磁性复合纳米材料的制备、表征及性能研究方面的进展,讨论的体系主要有:铁氧体基永磁/软磁(反铁磁)复合纳米材料、非磁性体包覆磁性核而成的复合纳米材料、用磁性颗粒催化合成的碳基复合纳米材料、基于交换偏置效应而设计的复合纳米材料、核-壳同轴结构的一维复合纳米材料和核/壳/壳三元结构的磁性复合纳米材料等.构建复合体系的组分包括M型永磁铁氧体、3d过渡金属(及其合金、氧化物、碳化物)、多铁化合物、非磁性体(比如绝缘体、半导体、有机分子)和碳材料等,着重分析了复合纳米材料的热稳定性、光致发光性能、光电催化能力、电化学特性、微波吸收性能、磁电阻效应、永磁体性能、高频软磁特性、交换偏置效应及其相关现象.最后,对核/壳结构磁性复合纳米材料的未来发展趋势进行了展望,并在基础研究和改性应用方面提出了一些建议. 相似文献
4.
TANG NuJiang Lü LiYa ZHONG Wei AU ChakTong & DU YouWei Nanjing National Laboratory of Microstructures Nanjing University Nanjing China Department of Chemistry Hong Kong Baptist University Hong Kong China 《中国科学G辑(英文版)》2009,(1)
A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range. 相似文献
5.
A detailed investigation of exchange bias properties of an inverted nanoparticle with an antiferromagnetic core and a ferromagnetic binary alloy shell of the type is presented by benefiting from Monte Carlo simulations. Exchange bias displays a non-monotonic behavior with the varying value of the concentration the type-B magnetic components, x. Coercivity exhibits a monotonic or a non-monotonic variation with x depending on the relative strength between unlike magnetic components in the shell. Particular attention has also been given to determine the effects of the cooling field process on the magnetic properties of the nanoparticle. Numerical results obtained in this work present a different physical mechanism and an alternative way for tuning the exchange bias and coercivity of bimagnetic core/shell nanoparticles. 相似文献
6.
Ni nanoparticles (Ni-NPs), with diameter (D) ranging 5–30 nm, were synthesized by reducing nickel chloride with NaBH4 in the presence of polymer molecules of poly-vinyl alcohol (PVA) in cold water. Nickel chloride was dispersed in the PVA molecules which stabilized the resulting Ni-NPs. Experiments were carried out with and without PVA to elucidate the effect of PVA molecules on the structural and magnetic properties of Ni-NPs. It was found that both uncoated (uc) and PVA-coated (pc) Ni-NPs exhibit a tetragonal (t) crystal structure, i.e. different from the cubic (fcc) structure of bulk nickel. pc Ni-NPs (paramagnetic in nature) converted to fcc Ni (spherical shape, D ~ 12 nm) on annealing at 573 K in air, exhibiting a saturation magnetization M s = 20.5 emu/g, squareness ratio M r /M s = 0.48 and coercivity H c = 248 Oe, which is higher than the bulk Ni (0.7 Oe). uc Ni-NPs showed little improvement in M s and H c on air annealing. The core–shell structure resulted in a high H c value in stable pc Ni-NPs in air. Electron magnetic resonance revealed exchange interaction between the core and shell, which changes on annealing in air. 相似文献
7.
Synthetic anti-ferromagnetic nanoparticles (SAFs) are a novel type of magnetic nanoparticle (MNP) fabricated using nanoimprint lithography, direct deposition of multilayer films and retrieval in liquid phase via an ‘etching’ release process. Such physical fabrication techniques enable accurate control of particle shape, size and composition. We systematically varied the processing conditions to produce different configurations of SAF nanoparticles and performed extensive characterization using transmission electron microscopy (TEM) and alternating gradient magnetometry (AGM) to study their corresponding structural and magnetic behavior. A key focus of this paper is the preparation of TEM cross-section specimens of SAF nanoparticles for their structural characterization. This is not a trivial task, but is useful and revealing in terms of structural features. A major finding from our study shows that the introduction of oxygen during deposition of the copper release layer gives significantly improved flatness of the multilayer structure but no significant change in the magnetic properties. Magnetic measurements show that these nanoparticles have nearly zero magnetic remanence, a linear response of magnetization and more than twice the saturation magnetization compared to iron oxide nanoparticles. 相似文献
8.
Films of magnetic nanoparticles uniformly mixed with non-magnetic nanoparticles have been produced by ultrashort pulsed laser deposition. These films present innovative characteristics with respect to their counterparts produced by standard techniques, as for example nanosecond laser ablation or sputtering, due to the peculiar shape and preferential distribution of their constituent nanoparticles. In the present investigation, the difficult coalescence among the deposited nanoparticles, specific characteristic of the ultrashort pulsed laser deposition, is particularly stressed for what concerns its effect on the collective magnetic behaviour. In particular, we observed that, even for a significant fraction of magnetic particles, the films exhibit an unusual high remanent magnetization, together with relatively low values of saturation and coercive fields, showing a strong squareness of the hysteresis loops. In perspective, these nanogranular films appear very promising for potential application as permanent magnets and in magnetic recording. 相似文献
9.
X.F. Hu 《Applied Surface Science》2006,252(13):4625-4627
The synthetic antiferromagnets (SAF) have been used in spin-valve sensor in data storage industry [1]. We report a new hard/Ru/soft sandwich structure (SHBL) fabricated by pulsed lased deposition to replace current single layer structure for information recording application. SHBL consists of two magnetic layers separated by thin nonmagnetic layers, typically with Ru layers of 0.7-1.2 nm, through which antiferromagnetic coupling is induced. Varying the relative thickness of the magnetic layers, the spacer layers, and the type of magnetic materials can alter magnetic properties of CoCrPt/Ru/CoFe superlattice. The coercivity Hc and grain size of magnetic layer is also dependent on the laser fluence. High laser fluence results in both small grain size and high Hc. The observed phenomena are related to high quenching and deposition rates during PLD at high fluence, resulting in more pronounced phase segregation. 相似文献
10.
A simple method for the synthesis of carbon-coated Ni/SiO2 core/shell nanocomposites is reported. The Ni nanoparticles were coated with silica layers via a combined procedure of sol-gel fabrication and hydrogen reduction prior to carbon coating via acetylene decomposition at an appropriate temperature. It was found that the anti-acid ability of the Ni/SiO2 composites was greatly enhanced after carbon coating. The results of magnetization measurement show that the real part (μ′) of complex permeability of the as-obtained sample is almost independent of frequency, and the imaginary part (μ″) stays small up to a frequency of 1 GHz. The encapsulation of Ni particles with SiO2 results in the rise of Ni nanoparticles resistivity. The outcome is the reduction in effect of eddy current at high frequency, making the real part μ′ almost constant and the imaginary part μ″ very small. Thus, this simple method may be effective for preparing composites of soft magnetic properties, especially in the high-frequency range. Supported by the Jiangsu Postdoctoral Foundation of Jiangsu Province and the Major Project of National Basic Research Program of China (Grant No. 2005CB623605) 相似文献
11.
Z.D. Vatansever 《Physics letters. A》2018,382(36):2539-2543
We perform Monte Carlo simulations for an antiferromagnetic/ferromagnetic core/shell nanoparticle with a doubly inverted structure. We investigate the dependence of the exchange bias field and coercivity on the magnetic dilution of the shell-interface and shell part. It is demonstrated that exchange bias and coercivity can exhibit monotonic or non-monotonic behavior depending on the location of the non-magnetic components. Also, temperature dependence of the exchange bias and coercivity of the system are studied for a particular defect concentration value. Our results provide an alternative way for tunning the magnetic properties of doubly inverted nanoparticles. 相似文献
12.
Nanoparticles of indomethacin (IM), a sparingly soluble drug in water, were prepared by pulsed laser deposition with Nd: YAG laser at 1064 nm. Variation of the deposition rate (DR) with various experimental conditions, such as species and pressure of the background gas, and laser fluence, was discussed. We obtained highest DR, 2.7 g/cm2min, under He at 100 Pa with the laser fluence of 25 J/cm2. In the deposited solid product, no trace of drug decomposition was observed by HPLC. Deposition of IM nanoparticles was achieved on the fluidized excipient, potato starch particles of 20 m regime. By TEM observation and zeta potential distribution measurement, we confirmed that surface of excipient particles was fully covered by nanoparticles of IM. Thus, the present method enables us a new method of one-step preparation of drug-excipient nanocomposites to eliminate tedious problems associated with nanoparticles handling. 相似文献
13.
Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser (λ = 248 nm) of about 1 J/cm2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties. 相似文献
14.
Pt/Co/Hf multilayers were prepared by magnetron sputtering, and the magnetic anisotropy was effectively regulated by Hf thickness and heat treatment in Pt/Co/Hf films. The interface microstructures were characterized. The influence of the interface microstructure on magnetic properties was studied. The results show that the magnetic anisotropy in Pt/Co/Hf films is closely related to the interface microstructure, which is influenced by Hf thickness and the heat treatment temperature. Microstructure analysis shows that after the Pt(3)/Co(1.5)/Hf(1) film is heat-treated, the CoOx content increases, more CoPt(111) forms, the interface is smoother and sharper, and the roughness of the Co/Hf interface decreases. Several factors work together to cause the magnetic anisotropy of the sample to change from in-plane magnetic anisotropy (IMA)to perpendicular magnetic anisotropy (PMA). 相似文献
15.
利用脉冲激光沉积方法制备出了具有室温铁磁性的Ni1-1-xFexO(x=0.02,O.05)稀磁半导体.X射线衍射(XRD)结果表明Ni,1-xFexO的品体结构为Nacl结构,并且在Fe含量较高的Ni095Fe0.05O中出现了少量的a-Fe2O3物相.X射线吸收近边结构谱(XANFS)和X射线光电子能谱(XPs)进一步表明了掺杂的Fe原子替代Ni0日格中Ni原子,并且样品中不存在能够诱导室温磁性的第二相.这些研究结果表明Ni1-xFexO的室温铁磁性是本征的. 相似文献
16.
G. A. Torchia L. B. Scaffardi C. Méndez P. Moreno J. O. Tocho L. Roso 《Applied Physics A: Materials Science & Processing》2008,93(4):967-971
This work presents a method, based on measurements of the optical extinction spectra, to determine the size of spherical gold
nanoparticles produced using the femtosecond laser ablation process in deionized water. By using an improved theoretical model
that modifies the contribution of the free electrons to the dielectric function introducing a size-dependent term, it is possible
to fit the full experimental extinction spectrum considering a certain size distribution. Additionally, in order to obtain
complementary measurements of the size distribution, TEM analysis was performed. The results obtained showed that the predominant
nanoparticle size distribution ranges from 1 to 11 nm in terms of radii. An optical extinction measurement together with an
appropriate theoretical model based on Mie’s theory represents a simple, low-cost, fast and easy method to describe a multimodal
size distribution of spherical gold nanoparticles. 相似文献
17.
A series of nanogranular CoCrM/TiCr thin films have been fabricated by pulsed-laser deposition on Si(1 1 1) substrates at 450–500 °C. The crystal structure and magnetic properties of these films were investigated. The transmission electron microscope images with selected area diffraction and X-ray diffraction showed that the structure of as-prepared films is dependent on laser energy and deposition temperature. It was found that the microstructure of CoCrM/TiCr films consisted of fine dispersive crystal grains, while the preferential c-axis orientation of films deteriorated when the thickness of CoCr-alloy layer increased along with metal doping into the CoCr films. The magnetic properties of CoCrM/TiCr films formed on Si are strongly dependent on the thickness of magnetic layer, grain structure, and grain shape. Enhancement of coercivity and squareness of the laser-deposited film is probably due to the improvement in the magnetocrystalline anisotropy energy and the reduction in the thickness of magnetic layer. 相似文献
18.
A sonochemical approach for the one-pot three-component synthesis of pyridoimidazoisoquinolines via by using phthalaldehyde, trimethylsilylcyanide and aminopyridines the presence of a catalytic amount of a new nanomagnetic catalyst Fe3O4@SiO2-CO-C6H4-NH2 is described. The characterization of the nanocatalyst and the product was done by various methods, such as FT-IR, SEM, EDX, TGA/DTA, NMR, MS and CHN analyses. This is the first design, preparation, characterization and application of the present core/shell nanomaterial and also the first ultrasound irradiated synthesis of the biologically and pharmaceutically important fused polycyclic compounds in ethanol as a green solvent. This novel protocol offers several advantages such as high yields, short reaction times, environmentally-friendly reaction media, easily isolation of the products, simple preparation and recoverability of the nanocatalyst by an external magnet and reusing several times without significant decrease in catalytic activity. 相似文献
19.
Z.Q. Liu K. Mitsuishi K. Furuya 《Physica E: Low-dimensional Systems and Nanostructures》2005,29(3-4):702
Two methods were used to fabricate tungsten supertips by electron-beam-induced deposition using 200 keV electrons. The first method is stationary deposition of self-standing tips. The smallest lateral size is less than 10 nm with a rather low aspect ratio of tip. High aspect ratio (up to 30) can only be obtained at a big lateral size with a saturated root diameter of 60–65 nm. The other method is scan deposition of self-supporting tip, with a root width of 7–10 nm and a sharp apex in size of 3 nm. Using this method a higher aspect ratio (more than 72) can be achieved at a smaller lateral size, which is better to fabricate fine supertips for usage. 相似文献
20.
I. Gallardo K. Hoffmann J. W. Keto 《Applied Physics A: Materials Science & Processing》2009,94(1):65-72
Laser Ablation of Microparticles (LAM) is a process of nanoparticle formation in which microparticles in a flowing aerosol
are continuously ablated by high-power laser pulses. For the first time, we have produced CdSe/ZnS core/shell nanoparticles
using a double ablation apparatus, designed to undergo a two-step LAM process. This process can be inverted to produce ZnS/CdSe
core/shell nanoparticles. The present work focuses on the range around ∼15 nm radius heterostructures and uses high-resolution
transmission electron microscopy (HRTEM) to image core and shells. For smaller particles, core shell structures have been
detected with energy dispersive spectroscopy (EDS) 5 nm spot size beam and fast Fourier transform (FFT) spectra. Differences
in the ablation behavior were measured between the two IIB–VIA type semiconductors. 相似文献