首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel [NiS4Fe2(CO)6]cluster (1: 'S(4)'=(CH(3)C(6)H(3)S(2))(2)(CH(2))(3)) has been synthesised, structurally characterised and has been shown to undergo a chemically reversible reduction process at -1.31 V versus Fc(+)/Fc to generate the EPR-active monoanion 1(-). Multifrequency Q-, X- and S-band EPR spectra of (61)Ni-enriched 1(-) show a well-resolved quartet hyperfine splitting in the low-field region due to the interaction with a single (61)Ni (I=3/2) nucleus. Simulations of the EPR spectra require the introduction of a single angle of non-coincidence between g(1) and A(1), and g(3) and A(3) to reproduce all of the features in the S- and X-band spectra. This behaviour provides a rare example of the detection and measurement of non-coincidence effects from frozen-solution EPR spectra without the need for single-crystal measurements, and in which the S-band experiment is sensitive to the non-coincidence. An analysis of the EPR spectra of 1(-) reveals a 24 % Ni contribution to the SOMO in 1(-), supporting a delocalisation of the spin-density across the NiFe(2) cluster. This observation is supported by IR spectroscopic results which show that the CO stretching frequencies, nu(CO), shift to lower frequency by about 70 cm(-1) when 1 is reduced to 1(-). Density functional calculations provide a framework for the interpretation of the spectroscopic properties of 1(-) and suggest that the SOMO is delocalised over the whole cluster, but with little S-centre participation. This electronic structure contrasts with that of the Ni-A, -B, -C and -L forms of [NiFe] hydrogenase in which there is considerable S participation in the SOMO.  相似文献   

2.
Irradiated samples of deproteinized powdered human bone (femur) have been examined by electron paramagnetic resonance (EPR) spectroscopy in X, Q and W bands. In the bone powder sample only one type of CO2- radical ion is stabilized in the hydroxyapatite structure in contrast to powdered human tooth enamel, a material also containing hydroxyapatite, widely used for EPR dosimetry and in which a few radicals are stable at room temperature. It is suggested that the use of deproteinized bone for EPR dosimetry could improve the accuracy of dose determination.  相似文献   

3.
Electron paramagnetic resonance (EPR) is often used in dosimetry using biological samples such as teeth and bones. It is generally assumed that the radicals, formed after irradiation, are similar in both tissues as the mineral part of bone and tooth is carbonated hydroxyapatite. However, there is a lack of experimental evidence to support this assumption. The aim of the present study was to contribute to that field by studying powder and block samples of human finger phalanxes that were irradiated and analyzed by multi-frequency EPR. The results obtained from bones are different from the ones obtained in enamel by several respects: the ordering of the apatite crystallites is much smaller in bone, complicating the assignment of the observed CO2- radicals to a specific location, and one type of CO3(3-) radical was only found in enamel. Moreover, a major difference was found in the non-CO2- and non-CO3(3-) signals. The elucidation of the nature of these native signals (in bone and tooth enamel) still represents a big challenge.  相似文献   

4.
Lithium formate electron paramagnetic resonance (EPR) dosimeters were irradiated using 60Co gamma-rays or fast neutrons to doses ranging from 5 to 20 Gy and investigated by EPR spectroscopy. Using a polynomial fitting procedure in order to accurately analyze peak-to-peak line widths of first derivative EPR spectra, dosimeters irradiated with neutrons had on average 4.4+/-0.9% broader EPR resonance lines than gamma-irradiated dosimeters. The increase in line width was slightly asymmetrical. Computer simulated first derivative polycrystalline EPR spectra of a *CO2- radical gave very good reconstructions of experimental spectra of irradiated dosimeters. The spectrum simulations could then be used as a tool to investigate the line broadening observed following neutron irradiation. It was shown that an increase in the simulated Lorentzian line width could explain both the observed line broadening and the asymmetrical effect. The ratio of the peak-to-peak amplitude of first derivative EPR spectra obtained at two different microwave powers (20 and 0.5 mW) was 7.8+/-1.2% higher for dosimeters irradiated with neutrons. The dependence of the spectrum amplitude on the microwave power was extensively investigated by fitting observations to an analytical non-linear model incorporating, among others, the spin-lattice (T1) and spin-spin (T2) relaxation times as fitting parameters. Neutron irradiation resulted in a reduction in T(2) in comparison with gamma-irradiation, while a smaller difference in T1 was found. The effects observed indicate increased local radical density following irradiation using high linear energy transfer (LET) neutrons as compared to low LET gamma-irradiation. A fingerprint of the LET may thus be found either by an analysis of the line width or of the dependence of the spectrum amplitude on the microwave power. Lithium formate is therefore a promising material for EPR dosimetry of high LET radiation.  相似文献   

5.
Copper(II) complexes of reduced glutathione (GSH) of general composition Na[Cu(L)(X)]*nH2O (where LH2=GSH; X=Cl-, NO3-, NCS-, CH3CO2-, HCO2-, ClO4- and n=0-4) have been prepared and characterized by elemental analysis, magnetic susceptibility measurements, IR spectroscopy, EPR spectroscopy and ligand-field spectroscopy. The EPR and ligand field spectra in the solid state suggest planar geometry for all the complexes.  相似文献   

6.
Samples of the anatase phase of titania were treated under vacuum to create Ti(3+) surface-defect sites and surface O(-) and O(2) (-) species (indicated by electron paramagnetic resonance (EPR) spectra), accompanied by the disappearance of bridging surface OH groups and the formation of terminal Ti(3+)-OH groups (indicated by IR spectra). EPR spectra showed that the probe molecule [Re(3)(CO)(12)H(3)] reacted preferentially with the Ti(3+) sites, forming Ti(4+) sites with OH groups as the [Re(3)(CO)(12)H(3)] was adsorbed. Extended X-ray absorption fine structure (EXAFS) spectra showed that these clusters were deprotonated upon adsorption, with the triangular metal frame remaining intact; EPR spectra demonstrated the simultaneous removal of surface O(-) and O(2) (-) species. The data determined by the three complementary techniques form the basis of a schematic representation of the surface chemistry. According to this picture, during evacuation at 773 K, defect sites are formed on hydroxylated titania as a bridging OH group is removed, forming two neighboring Ti(3+) sites, or, when a Ti(4+)-O bond is cleaved, forming a Ti(3+) site and an O(-) species, with the Ti(4+)-OH group being converted into a Ti(3+)-OH group. When the probe molecule [Re(3)(CO)(12)H(3)] is adsorbed on a titania surface with Ti(3+) defect sites, it reacts preferentially with these sites, becoming deprotonated, removing most of the oxygen radicals, and healing the defect sites.  相似文献   

7.
The vibrational spectra of Os(CO)(6)(2+) and some of its mixed carbonyl-halide complexes, cis-Os(CO)(2)X(4)(2-), fac-Os(CO)(3)X(3)(-) and Os(CO)(5)X(+) (X=F, Cl, Br and I), have been systematically investigated by ab initio RHF and density functional B3LYP methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of complexes Os(CO)(6)(2+), cis-Os(CO)(2)X(4)(2-) and fac-Os(CO)(3)X(3)(-) are evaluated via comparison with the experimental values. In infrared frequency region, the C-O stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations less than 5%. In the far-infrared region, the B3LYP/SDD method achieved the best results with deviations less than 9% for Os-X stretching and less than 8% for Os-C stretching vibrational frequencies. The vibrational frequencies for Os(CO)(5)X(+) that have not been experimentally reported were predicted.  相似文献   

8.
The vibrational spectra of Ru(CO)6(2+) and some of its mixed carbonyl-halide complexes, cis-Ru(CO)2X4(2-), fac-Ru(CO)3X3- and Ru(CO)5X+ (X = F, Cl, Br and I), have been systematically investigated by ab initio RHF and density functional B3LYP methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of complexes Ru(CO)6(2+), cis-Ru(CO)2X4(2-) and fac-Ru(CO)3X3- are evaluated via comparison with the experimental values. In the infrared frequency region, the C-O stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations less than 5%. In the far-infrared region, the B3LYP/SDD method achieved the best results with deviations less than 8% for Ru-X stretching and less than 2% for Ru-C stretching vibrational frequencies. The vibrational frequencies for Ru(CO)5X+ that have not been experimentally reported were predicted.  相似文献   

9.
Reaction of Pd(2)(DAniF)(4), 1, (DAniF = di-p-anisylformamidinate) with 1 equiv of AgPF(6) in CH(2)Cl(2) at or below -10 degrees C produces the paramagnetic species [Pd(2)(DAniF)4]PF(6), 1-PF(6), that has been studied by X-ray crystallography, UV-vis spectroscopy, electrochemistry, and multifrequency (9.5, 34.5, 110, and 220 GHz) EPR spectroscopy. Upon oxidation of the precursor, the Pd-Pd distance decreases by 0.052 Angstrom from 2.6486(8) to 2.597(1) Angstrom. The EPR spectra show broad signals with line widths of about 1000 G. The spectra collected at high field show a large spread of g tensor components ( approximately 0.03), but these are masked at lower frequencies (9.5 and 34.5 GHz). A reinvestigation using high-field EPR of the p-tolyl analogue, which is the only other structurally characterized Pd(2)(5+) species (Cotton, F. A.; Matusz, M.; Poli, R.; Feng, X. J. Am. Chem. Soc. 1988, 110, 1144), shows that this species, which had been reported to give an isotropic 9.5 GHz EPR spectrum, also gives anisotropic 110 and 220 GHz EPR spectra with a similarly large spread of g tensor components consistent with the unpaired electron residing in a metal-based MO. The results of these studies and calculations using density functional theory are consistent with the oxidation being metal-based, resulting in an uncommon Pd(2)(5+) species with a Pd-Pd bond order of 1/2.  相似文献   

10.
For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).  相似文献   

11.
Optimized structures for the redox species of the diiron active site in [Fe]-hydrogenase as observed by FTIR and for species in the catalytic cycle for the reversible H(2) oxidation have been determined by density-functional calculations on the active site model, [(L)(CO)(CN)Fe(mu-PDT)(mu-CO)Fe(CO)(CN)(L')](q)(L = H(2)O, CO, H(2), H(-); PDT = SCH(2)CH(2)CH(2)S, L' = CH(3)S(-), CH(3)SH; q = 0, 1-, 2-, 3-). Analytical DFT frequencies on model complexes (mu-PDT)Fe(2)(CO)(6) and [(mu-PDT)Fe(2)(CO)(4)(CN)(2)](2)(-) are used to calibrate the calculated CN(-) and CO frequencies against the measured FTIR bands in these model compounds. By comparing the predicted CN(-) and CO frequencies from DFT frequency calculations on the active site model with the observed bands of D. vulgaris [Fe]-hydrogenase under various conditions, the oxidation states and structures for the diiron active site are proposed. The fully oxidized, EPR-silent form is an Fe(II)-Fe(II) species. Coordination of H(2)O to the empty site in the enzyme's diiron active center results in an oxidized inactive form (H(2)O)Fe(II)-Fe(II). The calculations show that reduction of this inactive form releases the H(2)O to provide an open coordination site for H(2). The partially oxidized active state, which has an S = (1)/(2) EPR signal, is an Fe(I)-Fe(II) species. Fe(I)-Fe(I) species with and without bridging CO account for the fully reduced, EPR-silent state. For this fully reduced state, the species without the bridging CO is slightly more stable than the structure with the bridging CO. The correlation coefficient between the predicted CN(-) and CO frequencies for the proposed model species and the measured CN(-) and CO frequencies in the enzyme is 0.964. The proposed species are also consistent with the EPR, ENDOR, and M?ssbauer spectroscopies for the enzyme states. Our results preclude the presence of Fe(III)-Fe(II) or Fe(III)-Fe(III) states among those observed by FTIR. A proposed reaction mechanism (catalytic cycle) based on the DFT calculations shows that heterolytic cleavage of H(2) can occur from (eta(2)-H(2))Fe(II)-Fe(II) via a proton transfer to "spectator" ligands. Proton transfer to a CN(-) ligand is thermodynamically favored but kinetically unfavorable over proton transfer to the bridging S of the PDT. Proton migration from a metal hydride to a base (S, CN, or basic protein site) results in a two-electron reduction at the metals and explains in part the active site's dimetal requirement and ligand framework which supports low-oxidation-state metals. The calculations also suggest that species with a protonated Fe-Fe bond could be involved if the protein could accommodate such species.  相似文献   

12.
The variable temperature (1)H and (13)C NMR and EPR spectra of the stable radical anions [Os(3)(CO)(9)(micro(3)-eta(2)-L)(micro-H)] (LH=phenanthridine, 1; 5,6-benzoquinoline, 2), and [Os(3)(CO)(10)(micro(3)-eta(2)-L)(micro-H)] (LH=quinoxaline, 3) are reported. The radical anions 1(-), 2(-), and 3(-) can be prepared by both exhaustive electrolysis and partially by chemical reduction with cobaltocene and with sodium dispersion (only with sodium dispersion in the case of 3(-)). DFT calculations on 1-3 reveal that the LUMO for the electron-deficient compounds 1 and 2 involves significant contributions from both the heterocyclic ligand and the two metal atoms bridged by the ligand and the micro-hydride. The character of this orbital rationalizes the previously observed regioselective reactions of these complexes with nucleophiles. In contrast, the LUMO for the electron precise 3 involves only ligand-based orbitals. Partial chemical reduction of 1 and 2 requires an excess of either cobaltocene or sodium, and their (1)H and (13)C NMR spectra reveal selective line broadening of those proton resonances that are predicted by DFT calculations to bear the greatest amount of free spin density. The variable temperature behavior of the partially chemically reduced species of 1 and 2 indicates that electron transfer between the reduced/unreduced cluster pair and between the cobaltocene/cobaltocenium pair occurs on the NMR timescale. The radical anions of 1 and 2 prepared by exhaustive electrolysis show an EPR signal at room temperature, while the NMR signals are uniformly broadened. Compound 3 appears to be partially reduced by sodium at room temperature and shows uniformly broadened (1)H NMR resonances at room temperature that sharpen significantly at -80 degrees C. The temperature dependence of the spectra are discussed in terms of the effects of relative electron nuclear relaxation processes, chemical exchange, and the results of the DFT calculations.  相似文献   

13.
The electron paramagnetic resonance (EPR) studies on VO2+ doped L-arginine phosphate monohydrate (LAP) single crystals at room temperature at X-band frequencies reveal the presence of two magnetically inequivalent VO2+ sites occupying interstitial positions in the lattice with fixed orientations and show very high angular dependence. The principal values of the g and A tensors indicate that the electrostatic field around the VO2+ ion is rhombic. The optical absorption spectra at room temperature show four absorption bands at 16155, 14775, 10928 and 10526 cm(-1), characteristic of rhombic symmetry. From EPR and optical absorption data, the molecular orbital bonding coefficients (beta2, epsilon2, P and k) and the crystal field parameters have been evaluated.  相似文献   

14.
Limestone and dolomite minerals have been investigated by EPR and optical absorption studies. The optical absorption results indicate the presence of ferrous and ferric ion in both the minerals. The bands observed at 24,750, 22,780, 19,415 and 14,450cm(-1) are assigned to 6A1-->4T2 (4D), 6A1-->4E, 4A1 (4G), 6A1-->4T2 (4G) and 6A1-->4T1 (4G) d-d transitions of Fe3+ ions, respectively. A low energy band at 10,638cm(-1) is identified as being due to Fe2+ ion and can be attributed to 5T2g-->5E(g) transition. The weak band in the region 30,000-40,000cm(-1) corresponds to Fe-O charge transfer. Crystal field and Racah parameters evaluated for the Fe2+ ion are Dq=990cm(-1), B=885cm(-1) and C=3860cm(-1) and that for Fe3+ ions are Dq=1040cm(-1), B=703cm(-1) and C=3150cm(-1). The room temperature 9 and 35GHz EPR spectra of the minerals exhibit a sextet hyperfine pattern characteristic of Mn2+. The EPR parameters obtained for Mn2+ in limestone are g=2.00399, A= -9.411mT, D= -8.19mT and these values confirm that the Mn2+ ion are located in the calcite impurity. For Mn2+ in dolomite are g=2.0004, A= -9.45mT for Mn2+ substituted in the Ca lattice site and g=2.00984, A= -9.37mT, D= -9.94mT for substitution at the Mg site. The EPR spectra of heat-treated limestone and dolomite samples at 950 degrees C show a signal corresponding to CO2(-) ion.  相似文献   

15.
We present an EPR study of two Gd(III) complexes in aqueous solution at multiple temperatures and EPR frequencies. These two complexes, [Gd(TPATCN)] and [Gd(DOTAM)(H(2)O)](3+), display remarkably sharp lines (i.e. slow transverse electron spin relaxation) in comparison with all complexes studied in the past, especially at X-band ( approximately 9.08 GHz). These unprecedented spectra even show, for the first time in solution, a distinct influence of hyperfine coupling to two magnetically active Gd isotopes ((155)Gd 14.8%, I = 3/2, gamma = -0.8273 x 10(7) s(-1) T(-1) and (157)Gd, 15.65%, I = 3/2, -1.0792 x 10(7) s(-1) T(-1)). The hyperfine coupling splitting in [Gd(TPATCN)] was determined accurately for a (157)Gd-enriched complex, and the value A((157)Gd)/gmu(B) = 5.67 G seems to be a good estimation for most chelates of interest. Consequently, we can safely assert that neglecting the Gd isotopes in line shape studies is not a significant source of error as long as the apparent peak-to-peak width is greater than 10-20 G. This is generally the case, except at very high EPR frequencies (>150 GHz). Analyzing the spectra within the physical model of Rast et al. we find that the slow electron spin relaxation is due to a nearly zero static ZFS. We discuss some structural features that might explain this interesting electron structure.  相似文献   

16.
The complexes {(mu4-TCNX)[Fe(CO)2(C5H5)]4}(BF4)4 were prepared as light-sensitive materials from [Fe(CO)2(C5H5) (THF)](BF4) and the corresponding TCNX ligands (TCNE = tetracyanoethene, TCNQ=7,7,8,8-tetracyano-p-quinodimethane, TCNB=1,2,4,5-tetracyanobenzene). Whereas the TCNE and TCNQ complexes are extremely easily reduced species with reduction potentials>+0.3 V vs ferrocenium/ferrocene, the tetranuclear complex of TCNB exhibits a significantly more negative reduction potential at about -1.0 V. Even for the complexes with strongly pi-accepting TCNE and TCNQ, the very positive reduction potentials, the unusually high nitrile stretching frequencies>2235 cm(-1), and the high-energy charge-transfer transitions indicate negligible metal-to-ligand electron transfer in the ground state, corresponding to a largely unperturbed (TCNX degrees)(FeII)4 formulation of oxidation states as caused by orthogonality between the metal-centered HOMO and the pi* LUMO of TCNX. M?ssbauer spectroscopy confirms the low-spin iron(II) state, and DFT calculations suggest coplanar TCNE and TCNQ bridging ligands in the complex tetracations. One-electron reduction to the 3+ forms of the TCNE and TCNQ complexes produces EPR spectra which confirm the predominant ligand character of the then singly occupied MO through isotropic g values slightly below 2, in addition to a negligible g anisotropy of frozen solutions at frequencies up to 285 GHz and also through an unusually well-resolved solution X band EPR spectrum of {(mu4-TCNE)[Fe(CO)2(C5H5)]4}3+ which shows the presence of four equivalent [Fe(CO)2(C5H5)]+ moieties through 57Fe and 13C(CO) hyperfine coupling in nonenriched material. DFT calculations reproduce the experimental EPR data. A survey of discrete TCNE and TCNQ complexes [(mu4-TCNX)(MLn)4] exhibits a dichotomy between the systems {(mu4-TCNX)[Fe(CO)2(C5H5)]4}4+ and {(mu4-TCNQ)[Re(CO)3(bpy)]4}4+ with their negligible metal-to-ligand electron transfer and several other compounds of TCNE or TCNQ with Mn, Ru, Os, or Cu complex fragments which display evidence for a strong such interaction, i.e., an appreciable value delta in the formulation {(mu4-TCNXdelta-)[Mx+delta/4Ln]4}. Irreversibility of the first reduction of {(mu4-TCNB)[Fe(CO)2(C5H5)]4}(BF4)4 precluded spectroelectrochemical studies; however, the high-energy CN stretching frequencies and charge transfer absorptions of that TCNB analogue also confirm the exceptional position of the complexes {(mu4-TCNX)[Fe(CO)2(C5H5)]4}(BF4)4.  相似文献   

17.
Formates and dithionates of 6Li, enriched and 7Li in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the 6Li sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the 6Li in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with 6Li dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of 6Li and 7Li regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons.  相似文献   

18.
The infrared photodissociation spectra of [(CO 2) n (CH 3OH) m ] (-) ( n = 1-4, m = 1, 2) are measured in the 2700-3700 cm (-1) range. The observed spectra consist of an intense broad band characteristic of hydrogen-bonded OH stretching vibrations at approximately 3300 cm (-1) and congested vibrational bands around 2900 cm (-1). No photofragment signal is observed for [(CO 2) 1,2(CH 3OH) 1] (-) in the spectral range studied. Ab initio calculations are performed at the MP2/6-311++G** level to obtain structural information such as optimized structures, stabilization energies, and vibrational frequencies of [(CO 2) n (CH 3OH) m ] (-). Comparison between the experimental and the theoretical results reveals the structural properties of [(CO 2) n (CH 3OH) m ] (-): (1) the incorporated CH 3OH interacts directly with either CO 2 (-) or C 2O 4 (-) core by forming an O-HO linkage; (2) the introduction of CH 3OH promotes charge localization in the clusters via the hydrogen-bond formation, resulting in the predominance of CO 2 (-).(CH 3OH) m (CO 2) n-1 isomeric forms over C 2O 4 (-).(CH 3OH) m (CO 2) n-2 ; (3) the hydroxyl group of CH 3OH provides an additional solvation cite for neutral CO 2 molecules.  相似文献   

19.
EPRStudyofaNewCrystaloftheBinuclearCopper(Ⅱ)ClusterCompound-〔Cu_2(α-C_(10)H_7CH_2CO_2)_4-(DMF)_2〕·(DMF)_2·H_2O¥SunQiong-Li;HuangX?..  相似文献   

20.
The photochemical reactivity, photophysical properties and redox behavior of the complexes trans,cis-[Ru(X)(X′)(CO)2(α-diimine)] and their derivatives are strongly dependent on the complex geometry, the nature and electronic properties of the α-diimine ligand and, most importantly, on the axial ligands X and X′ (alkyl, halide, phosphine, donor solvent, etc.). This paper deals mainly with comparison of reduction pathways for several different types of the trans,cis-[Ru(X)(X′)(CO)2(α-diimine)] complexes, also presenting some new results in this field. An equally important goal has been the comparison and discussion of the photo- and redox reactivity of these complexes from the viewpoint of the frontier orbitals involved and character of the Ru---X/X′ bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号