首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
报道了溶液掺杂法制备Er—Yb共掺双包层光纤的技术.采用改进的化学汽相沉积研制工艺,制作了SiO2-P2O5-F的光纤阻挡层和SiO2-GeO2-P2O5的疏松芯层,利用疏松芯层在YbCl3、ErCl3溶液中的浸泡吸收作用,成功研制出Er、Yb离子浓度比分别为1:13和1:8两个光纤样品。其中样品2在976nm泵浦波长处的有效吸收系数最大达到2dB/m,分析和讨论了光纤的损耗谱和荧光特性.  相似文献   

2.
采用MCVD方法研发了掺镱双包层光纤,并对其结构特性、荧光特性和激光特性进行了测试和研究。其D形内包层尺寸为400/450μm,数值孔径为0.36,纤芯直径约为16μm,数值孔径约为0.18。荧光谱线的范围为1 000~1 140 nm,1 030 nm处的峰宽大于50 nm。采用大功率激光二极管单端泵浦6 m长的双包层光纤,在泵浦入纤功率为61 W时, 获得了32 W的激光输出,斜率效率为64%。该光纤在高功率处未发现饱和现象,通过优化光纤参数与泵浦方式还可以提高转化效率和输出功率。实验表明该光纤可以取代进口光纤用作高功率激光器件。  相似文献   

3.
国产掺镱双包层光纤的激光特性   总被引:3,自引:2,他引:3       下载免费PDF全文
 采用MCVD方法研发了掺镱双包层光纤,并对其结构特性、荧光特性和激光特性进行了测试和研究。其D形内包层尺寸为400/450μm,数值孔径为0.36,纤芯直径约为16μm,数值孔径约为0.18。荧光谱线的范围为1 000~1 140 nm,1 030 nm处的峰宽大于50 nm。采用大功率激光二极管单端泵浦6 m长的双包层光纤,在泵浦入纤功率为61 W时, 获得了32 W的激光输出,斜率效率为64%。该光纤在高功率处未发现饱和现象,通过优化光纤参数与泵浦方式还可以提高转化效率和输出功率。实验表明该光纤可以取代进口光纤用作高功率激光器件。  相似文献   

4.
双包层Er-Yb共掺光纤放大器上能级粒子数分布研究   总被引:6,自引:3,他引:3  
基于速率方程和功率传播方程, 数值分析了双包层Er-Yb共掺光纤放大器在波长为972nm的泵浦光作用下, 分别采用三种不同泵浦方式, 其Er3+和Yb3+上能级粒子数分布情况. 数值结果表明,Er3+上能级粒子数分布受信号功率影响作用大, 激发率基本保持在50%以上; Yb3+上能级粒子数分布受泵浦功率影响作用大, 激发率基本保持在10%以下, 该结论对双包层Er-Yb共掺光纤放大器的性能研究具有一定指导意义.  相似文献   

5.
研究了一种混合掺铒/铒镱共掺光纤放大器,用掺铒光纤放大器作为输入信号的预放大器,用铒镱共掺双包层光纤放大器作为主放大器。掺铒光纤放大器采用20m长掺铒光纤作为增益介质,采用最大输出功率318mW的单模半导体激光器二极管作为泵浦源,预放大器获得的最大输出功率是113mW。铒镱共掺光纤放大器采用14m长铒镱共掺双包层光纤作为增益介质,采用2个915nm多模半导体激光二极管作为泵浦源,在输入信号功率为10mW、信号波长1555nm时,混合光纤放大器获得了最大输出功率为32.04dBm,即1.6W,与此相应的混合光纤放大器的光-光转换效率为18.5%。  相似文献   

6.
大功率掺Yb双包层光纤宽带超荧光光源   总被引:7,自引:1,他引:7  
利用波长为976nm的半导体激光器抽运掺Yb双包层光纤,制成了大功率光纤宽带超荧光光源,最大超荧光输出功率为54.11mW;此时斜率效率为69.35%,中心波长为1082nm,3dB带宽为17.2nm。  相似文献   

7.
基于速率方程和光传输方程,对级联双包层铒镱共掺光纤放大器(Er3+/Yb3+ co-Doped Fiber Amplifier,EYDFA)进行了研究.数值模拟计算得到级联双包层EYDFA的最佳光纤长度,以及前后向泵浦功率之比和光隔离器位置对于增益以及噪音系数的影响.通过选择合适的前后向泵浦功率之比和隔离器的位置优化级联放大器结构,其增益提高了4 dB,噪音系数降低了近3 dB.  相似文献   

8.
利用相位掩模法 ,在D形内包层掺Yb3 双包层光纤一端直接写制出Bragg光栅 ,用作双包层光纤激光器的输出腔镜 .试验得到了线宽为 0 196nm ,波长为 10 5 8 2nm ,最高输出功率为 5 70mW的稳定激光输出 ,解决了激光器中模式竞争造成的输出不稳定现象 .从速率方程出发 ,对激光器的输出功率与抽运功率、光栅反射率的关系以及最佳光纤长度进行了理论分析 ,结果与实验符合很好  相似文献   

9.
采用改进化学汽相沉积结合溶液掺杂法制备了Yb/P/Al共掺的石英光纤预制棒,通过光纤芯层的组份和制备工艺的优化,实现了Yb3+的高浓度掺杂和均匀掺杂.预制棒芯层Yb2O3掺杂浓度达到~4wt.%,Yb3+在1 080 nm处荧光寿命为1 780μs.成功拉制出内包层截面形状为八边形的双包层光纤,纤芯直径为7.5 μm,包层吸收系数达到~5 dB/m@976 nm.利用拉制的掺镱双包层光纤开展了全光纤结构的掺镱光纤激光器性能测试实验,实现了5.15W的激光输出,斜率效率达到76%.  相似文献   

10.
吴粤湘  马晓明  赵晓吉 《光子学报》2014,38(8):2066-2070
基于速率方程和光传输方程,对级联双包层铒镱共掺光纤放大器(Er3+/Yb3+ co-Doped Fiber Amplifier,EYDFA)进行了研究.数值模拟计算得到级联双包层EYDFA的最佳光纤长度,以及前后向泵浦功率之比和光隔离器位置对于增益以及噪音系数的影响.通过选择合适的前后向泵浦功率之比和隔离器的位置优化级联放大器结构,其增益提高了4 dB,噪音系数降低了近3 dB.  相似文献   

11.
报道了一种结构简单、工作在L波段、可调谐的线形腔Er/Yb共掺双包层光纤激光器.利用由两段高双折射光纤和两个偏振控制器构成的环镜滤波器对激光器进行调谐,使调谐范围达到34 nm,功率起伏小于±0.2 dB.用976 nm多模LD泵浦Er/Yb共掺双包层光纤产生的ASE作为二次泵源,对未泵浦的一段光纤进行泵浦,使腔内Er/Yb共掺光纤的增益谱移到L波段;多个泵浦源同时对Er/Yb共掺双包层光纤进行侧向泵浦,使激光器输出功率超过了200 mW.  相似文献   

12.
掺Yb3+双包层光纤中的绿光荧光分析   总被引:3,自引:7,他引:3  
普通单模光纤与掺Yb3+双包层光纤熔接后,当用波长为976nm激光耦合时,实验观察到掺Yb3+双包层光纤中呈现绿色的荧光并用光谱仪进行了测试分析表明:绿色荧光的产生为Yb3+离子间相互作用引起合作能量转移(CET)过程,这种能量转移过程将降低光纤激光器和光纤放大器的量子效率。  相似文献   

13.
在多模掺镱双包层光纤上,利用相位掩模法直接写制Bragg光栅作为激光器后腔镜,得到多波长激光输出.在室温下,通过调节偏振控制器可以得到稳定的单波长及多波长的激光输出,输出波长范围在1 056~1 061 nm,线宽均小于0.02 nm.在25 W的976 nm激光泵浦下,激光器得到功率为6 W的多波长输出.  相似文献   

14.
双包层掺染料聚合物光纤放大器的增益性能分析   总被引:1,自引:2,他引:1  
李炳新  于荣金 《光子学报》2005,34(10):1466-1472
双包层聚合物光纤放大器可以减小染料的热漂白,使用速率方程的方法,给出了一个能够全面描述双包层掺染料聚合物光纤放大器增益性能的模型,模型既考虑了染料三重态能级对速率方程的影响,又考虑了双包层结构对泵浦光的影响,可以在稳态的情况下计算放大器的各种增益性能指标.  相似文献   

15.
LD泵浦调Q双包层掺Nd3+光纤激光器进行了实验研究.在Littrow结构的体光栅与二向色镜构成的线形腔结构中,利用声光Q开关(AQM)调Q,在1064nm得到了光谱线宽约为0.08nm稳定的激光脉冲序列.脉冲重复频率从1kHz到10kHz可调.在重复频率1kHz时得到脉冲宽度约800ns,最大单脉冲能量180μJ,脉冲峰值功率225W,激光平均功率180mW,并对激光输出脉冲能量进行了计算,计算结果与实验符合很好.  相似文献   

16.
衣永青  黄榜才  宁鼎 《光子学报》2008,37(10):1928-1931
采用改进的化学汽相沉积工艺,沉积了光纤阻挡层和疏松层.结合溶液掺杂技术,研究了疏松层沉积温度、镱铝共掺工艺条件对掺镱浓度的影响,研究了大模场面积纤芯的制备工艺,实现了高浓度大模场面积掺镱双包层光纤的研制.测量并分析了光纤的光学性能参数及其激光特性,光纤芯径达到30 μm,纤芯摻镱浓度提高到4 000 ppm以上,芯数值孔径降至0.07,光纤的模场面积从113 μm2 提高到1 256 μm2,光纤的非线性效应阈值功率由12 W提高到大于128 W.  相似文献   

17.
分别通过理论和实验研究了周期性极化的钽酸锂(PPLT)倍频宽线宽准连续掺镱双包层光纤放大激光.PPLT样品长为40 mm,极化周期为7.67 μm.基频光的中心波长为1064 nm,线宽约为6 nm.从基频光的光谱特性出发,利用超晶格倍频理论,解释了实验中获得的倍频温度与二次谐波功率之间的关系.在基频光的功率为2.2 W时,获得的宽线宽光纤激光倍频效率为1.8%.  相似文献   

18.
19.
基于动态热传导方程,对高功率双包层光纤激光器的热效应进行了数值模拟,研究了高功率双包层光纤激光器内部温度场的空间及时间特性.计算表明,对于芯径为15 μm的光纤,开启泵浦光后约20 s光纤温度达到稳定值,关闭泵浦光后约20 s光纤冷却到室温,如采用脉冲泵浦,温度分布将随时间变化,波动频率与泵浦频率相同,泵浦频率越高波动越小,越接近相同平均功率的连续泵浦.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号