首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
SLS存在下meso-四(对三甲胺基苯基)卟啉测定微量铜   总被引:6,自引:0,他引:6  
研究了表面活性剂十二烷基苯磺酸钠存在时,meso-四(对三甲基苯基)卟啉「T(4-TMAP)P」与铜的显色反应。在pH=3.7的HAc-NAac介质中,在SLS眄,铜与「T(4-TMAP)P」形成1:2的稳定配合物,至少在4.5h内吸光度无变化。最大吸收波长位于410nm,ε=3.79×10^5L.mol^0-1.cm^-1。  相似文献   

2.
林君  李彬 《中国稀土学报》1993,11(4):307-310
在紫外光激发下,Eu^3+和Bi^3+在Me2Y8(SiO4)6O2基质(Me=Mg,Zn,Ca,Sr)中分别发射红光(^5D0-^7F2)和蓝光(^3P1-^1S0).Eu^3+发光的红橙比随着激发波长和Me^2+的不同而变化。荧光拉曼光谱表明,Eu^3+在四种基质中同时占据了4f格位和6h格位。依据Bi^3+发光的Stokes位移推断,当Me=Ca,Zn时,Bi^3+主要占据4f格位,而当Me  相似文献   

3.
(R)—四氢噻唑—2—硫酮—4—羧酸的合成及其晶体结构   总被引:3,自引:3,他引:3  
由L-半胱氨酸盐酸盐与二硫化碳在NaOH及CuSO4.H2O存在下反应得到(R)-四氢噻唑-2-硫酮-4-羧酸,「α」^20D-87.5°,产率66%。用X射线衍射法测得其晶体结构,属正交晶系,Pz1z1z1空间群,晶体学参数:α=0.5029(2)nm,b=0.77499(5)nm,c=1.6300(5)nm,V=0.6350(5)nm^3,Z=4。用分子轨道方法研究了该化合物的电子结构,得到其  相似文献   

4.
陈声培  黄国贤 《电化学》1999,5(3):252-260
采用原位红反射光谱(in-situ-FTIRS)结合紫外可见光谱(UV/Vis)和电化学徨伏安技术(CV),研究了「Os^Ⅵ(N)(NH3)4」(CF3SO3)3的电化学诱导桥氮偶联过程。首次在Pt电极上检测到桥氮混合价锇物中「Os-N≡N-oS」及其随电位的变化过程。在约2m mol/L「Os^Ⅵ(N)(NH)」(CF要的乙腈溶液中,选取0.4--1.0V电位区间100mV/s扫描速度,对Pt或  相似文献   

5.
以多晶射中的从头结构测定对其数据收集与处理的要求为依据,获得「Co(NH3)5Br」-Br2配合物的精密X射线粉末衍射谱的方法,总结了指标化实验中的问题与对策,得到标题配合物的正交晶系,晶胞参数:a=1.3710(1)nm,b=1.0715(1)nm,c=0.6947(1)nm,V_1.0206(1)nm^3,Z=4,Dx=2.50g.cm^-3,F30=81(0.0071,52),M20=41。  相似文献   

6.
合成了钇人氨酸配合物的单晶,用X射线衍射法了配合物单晶的结构,化学式为「Y(Ala)(H2O)6」Cl3。的晶体属单斜晶系,P21/c空间群,晶胞参数:d=0.8443(2)nm,b=1.5658(3)nm,c=1.1359(2)nm,β=102.09(2),V=1.4684(5)nm^3,Z=4,DC=1.775g/cm^3,Y^3+的配位数为8,其配位多面丛为三角十二面体。通过元素分析、红外光  相似文献   

7.
维生素B12模型分子侧链钴—氮键稳定性研究   总被引:1,自引:0,他引:1  
维生素B12模型分子「单腈六甲基-N-(3-咪唑在)丙酰胺钴啉酯高氯酸盐4b-4f」,在甲醇溶液中用酸性缓冲溶液处理生成5b-5f。通过测定不同PH的缓冲溶液中的UV-Vis谱。,计算了Co-N键的平衡常数,侧链氮原子与中心钴离子配位键的强弱次序为4d-4f-4c-4e-4d。  相似文献   

8.
研究了水溶性卟啉5,10,15,20-四(4-甲氧基-3-磺酸苯基)卟啉(T(4-MOP)PS4)与铅的显色反应,在pH11和酒石酸钾存在下铅与T(4-MOP)PS4在室温时间形成1:1的配合物,其最大吸收波长在位于464.4nm,摩尔吸光系数为2.3×10^5L.mol^-1.cm^-1,铅量在0~20μg/25mL,范围为符合比尔定律,工作工线回归方程A=0.0262+0.0435c相关系数r  相似文献   

9.
BDTAN与铜显色反应的研究及应用   总被引:3,自引:0,他引:3  
研究了新合成的双噻唑偶氮类试剂2,6-二偶氮-「1,1‘-(2,2’-二萘酚)」苯骈「1,2-d:4,5-d‘」二噻唑(BDTAN)与Cu^2+的显色反应。在Triton X-100存在下,pH6-pH7的范围内,该试剂与Cu^2+形成物质的量比为2:1的络合物,络合物对试剂空白的最大吸收波长λmax=625nm,ε为3.8×10^4L.mol^-1.cm^-1,Cu^2+的质量浓度在0-30μg  相似文献   

10.
合成了试剂2-「2,3,5-三氮唑偶氮」-5-二甲氨基苯甲酸(2-「2,3,5-tria-zolylazo」-5-dimethylaninobenzoic简称TZAMB),并研究了与钴的显色反应。在PH8.02的水溶液中钴与TZAMB形成一种稳定的蓝色络合物,其最大吸收波长位于609.4nm处,表观摩尔吸光系数为7.37*10^4L.mol^-1.cm^-1。络合物的组成为Co^2+;TZAMB=1:3,钴的浓度在0-1.2mg.L^-1范围内服比耳定律。方法已用于维生素B注射液和天然水中微量钴的测定。  相似文献   

11.
Synthesis, structure, and reactivity of two families of rare-earth metal complexes containing discrete methyl cations [LnMe(2-x)(thf)n]((1+x)+) (x = 0, 1; thf = tetrahydrofuran) have been studied. As a synthetic equivalent for the elusive trimethyl complex [LnMe3], lithium methylates of the approximate composition [Li3LnMe6(thf)n] were prepared by treating rare-earth metal trichlorides [LnCl3(thf)n] with 6 equiv of methyllithium in diethyl ether. Heteronuclear complexes of the formula [Li3Ln2Me9L(n)] (Ln = Sc, Y, Tb; L = Et2O, thf) were isolated by crystallization from diethyl ether. Single crystal X-ray diffraction studies revealed a heterometallic aggregate of composition [Li3Ln2Me9(thf)n(Et2O)m] with a [LiLn2Me9](2-) core (Ln = Sc, Y, Tb). When tris(tetramethylaluminate) [Ln(AlMe4)3] (Ln = Y, Lu) was reacted with less than 1 equiv of [NR3H][BPh4], the dimethyl cations [LnMe2(thf)n][BPh4] were obtained. The coordination number as well as cis/trans isomer preference was studied by crystallographic and computational methods. Dicationic methyl complexes of the rare-earth metals of the formula [LnMe(thf)n][BAr4]2 (Ln = Sc, Y, La-Nd, Sm, Gd-Lu; Ar = Ph, C6H4F-4) were synthesized, by protonolysis of either the ate complex [Li3LnMe6(thf)n] (Ln = Sc, Y, Gd-Lu) or the tris(tetramethylaluminate) [Ln(AlMe4)3] (Ln = La-Nd, Sm, Dy, Gd) with ammonium borates [NR3H][BAr4] in thf. The number of coordinated thf ligands varied from n = 5 (Ln = Sc, Tm) to n = 6 (Ln = La, Y, Sm, Dy, Ho). The configuration of representative examples was determined by X-ray diffraction studies and confirmed by density-functional theory calculations. The highly polarized bonding between the methyl group and the rare-earth metal center results in the reactivity pattern dominated by the carbanionic character and the pronounced Lewis acidity: The dicationic methyl complex [YMe(thf)6](2+) inserted benzophenone as an electrophile to give the alkoxy complex [Y(OCMePh2)(thf)5](2+). Nucleophilic addition of the soft anion X(-) (X(-) = I(-), BH4(-)) led to the monocationic methyl complexes [YMe(X)(thf)5](+).  相似文献   

12.
将Ni(ClO4)2和NH4PF6分别与硫胺素焦磷酸在甲醇体系中反应, 得到了两个新的离子盐型化合物[TPP·ClO4·H2O](1)和[TPP·PF6·CH3OH](2)(TPP为硫胺素焦磷酸酯). 通过元素分析、红外光谱及X射线衍射等方法对它们进行了表征. 结构分析表明, 它们属于离子型化合物, 而且硫胺素焦磷酸与高氯酸根, 六氟磷酸根形成了大量的氢键网络结构. 结合计算结果进一步分析了化合物的活性及电子结构特征.  相似文献   

13.
The synthetically accessible borohydride complexes (C(5)Me(4)H)(2)Ln(THF)(BH(4)) and (C(5)Me(5))(2)Ln(THF)(BH(4)) (Ln = Sc, Y) were examined as precursors alternative to the heavily-used tetraphenylborate analogs, [(C(5)Me(4)H)(2)Ln][BPh(4)] and [(C(5)Me(5))(2)Ln][BPh(4)], employed in LnA(2)A'/M reduction reactions (A = anion; M = alkali metal) that generate "LnA(2)" reactivity and form reduced dinitrogen complexes [(C(5)R(5))(2)(THF)(x)Ln](2)(μ-η(2):η(2)-N(2)) (x = 0, 1). The crystal structures of the yttrium borohydrides, (C(5)Me(4)H)(2)Y(THF)(μ-H)(3)BH, 1, and (C(5)Me(5))(2)Y(THF)(μ-H)(2)BH(2), 2, were determined for comparison with those of the yttrium tetraphenylborates, [(C(5)Me(4)H)(2)Y][(μ-Ph)(2)BPh(2)], 3, and [(C(5)Me(5))(2)Y][(μ-Ph)(2)BPh(2)], 4. The complex (C(5)Me(4)H)(2)Sc(μ-H)(2)BH(2), 5, was synthesized and structurally characterized for comparison with (C(5)Me(5))(2)Sc(μ-H)(2)BH(2), 6, [(C(5)Me(4)H)(2)Sc][(μ-Ph)BPh(3)], 7, and [(C(5)Me(5))(2)Sc][(μ-Ph)BPh(3)], 8. Structural information was also obtained on the borohydride derivatives, (C(5)Me(4)H)(2)Sc(μ-H)(2)BC(8)H(14), 9, and (C(5)Me(5))(2)Sc(μ-H)(2)BC(8)H(14), 10, obtained from 9-borabicyclo(3.3.1)nonane (9-BBN) and (C(5)Me(4)R)(2)Sc(η(3)-C(3)H(5)), where R = H, 11; Me, 12. The preference of the metals for borohydride over tetraphenylborate binding was shown by the facile displacement of (BPh(4))(1-) in 3, 4, 7, and 8 by (BH(4))(1-) to make the respective borohydride complexes 1, 2, 5, and 6. These results are consistent with the fact that the borohydrides are not as useful as precursors in A(2)LnA'/M reductions of N(2). An unusual structural isomer of [(C(5)Me(4)H)(2)Sc](2)(μ-η(2):η(2)-N(2)), 13', was isolated from this study that shows the variations in ligand orientation that can occur in the solid state.  相似文献   

14.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

15.
Gaseous Fe(4)S(n)(-) (n = 4-6) clusters and synthetic analogue complexes, Fe(4)S(4)L(n)(-) (L = Cl, Br, I; n = 1-4), were produced by laser vaporization of a solid Fe/S target and electrospray from solution samples, respectively, and their electronic structures were probed by photoelectron spectroscopy. Low binding energy features derived from minority-spin Fe 3d electrons were clearly distinguished from S-derived bands. We showed that the electronic structure of the simplest Fe(4)S(4)(-) cubane cluster can be described by the two-layer spin-coupling model previously developed for the [4Fe] cubane analogues. The photoelectron data revealed that each extra S atom in Fe(4)S(5)(-) and Fe(4)S(6)(-) removes two minority-spin Fe 3d electrons from the [4Fe--4S] cubane core and each halogen ligand removes one Fe 3d electron from the cubane core in the Fe(4)S(4)L(n)(-) complexes, clearly revealing a behavior of sequential oxidation of the cubane over five formal oxidation states: [4Fe--4S](-) --> [4Fe--4S](0) --> [4Fe--4S](+) --> [4Fe-4S](2+) --> [4Fe-4S](3+). The current work shows the electron-storage capability of the [4Fe--4S] cubane, contributes to the understanding of its electronic structure, and further demonstrates the robustness of the cubane as a structural unit and electron-transfer center.  相似文献   

16.
New syntheses of complexes containing the recently discovered (N(2))(3-) radical trianion have been developed by examining variations on the LnA(3)/M reductive system that delivers "LnA(2)" reactivity when Ln = scandium, yttrium, or a lanthanide, M = an alkali metal, and A = N(SiMe(3))(2) and C(5)R(5). The first examples of LnA(3)/M reduction of dinitrogen with aryloxide ligands (A = OC(6)R(5)) are reported: the combination of Dy(OAr)(3) (OAr = OC(6)H(3)(t)Bu(2)-2,6) with KC(8) under dinitrogen was found to produce both (N(2))(2-) and (N(2))(3-) products, [(ArO)(2)Dy(THF)(2)](2)(μ-η(2):η(2)-N(2)), 1, and [(ArO)(2)Dy(THF)](2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 2a, respectively. The range of metals that form (N(2))(3-) complexes with [N(SiMe(3))(2)](-) ancillary ligands has been expanded from Y to Lu, Er, and La. Ln[N(SiMe(3))(2)](3)/M reactions with M = Na as well as KC(8) are reported. Reduction of the isolated (N(2))(2-) complex {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2)), 3, with KC(8) forms the (N(2))(3-) complex, {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 4a, in high yield. The reverse transformation, the conversion of 4a to 3 can be accomplished cleanly with elemental Hg. The crown ether derivative {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(18-crown-6)(THF)(2)] was isolated from reduction of 3 with KC(8) in the presence of 18-crown-6 and found to be much less soluble in tetrahydrofuran (THF) than the [K(THF)(6)](+) salt, which facilitates its separation from 3. Evidence for ligand metalation in the Y[N(SiMe(3))(2)](3)/KC(8) reaction was obtained through the crystal structure of the metallacyclic complex {[(Me(3)Si)(2)N](2)Y[CH(2)Si(Me(2))NSiMe(3)]}[K(18-crown-6)(THF)(toluene)]. Density functional theory previously used only with reduced dinitrogen complexes of closed shell Sc(3+) and Y(3+) was extended to Lu(3+) as well as to open shell 4f(9) Dy(3+) complexes to allow the first comparison of bonding between these four metals.  相似文献   

17.
AbInitioStudiesontheStructureandBindingInteractionofM+CO2(M=Sc,Ti…Zn)*FANHong-Jun,ZHONGShi-Jun,LIUChun-Wan**(FujianInstituteo...  相似文献   

18.
The interaction of NO with [Fe(CN)(5)H(2)O](3)(-) (generated by aquation of the corresponding ammine complex) to produce [Fe(CN)(5)NO](3)(-) was studied by UV-vis spectrophotometry. The reaction product is the well characterized nitrosyl complex, described as a low-spin Fe(II) bound to the NO radical. The experiments were performed in the pH range 4-10, at different concentrations of NO, temperatures and pressures. The rate law was first-order in each of the reactants, with the specific complex-formation rate constant, k(f)( )()= 250 +/- 10 M(-)(1) s(-)(1) (25.4 degrees C, I = 0.1 M, pH 7.0), DeltaH(f)() = 70 +/- 1 kJ mol(-)(1), DeltaS(f)() = +34 +/- 4 J K(-)(1) mol(-)(1), and DeltaV(f)() = +17.4 +/- 0.3 cm(3) mol(-)(1). These values support a dissociative mechanism, with rate-controlling dissociation of coordinated water, and subsequent fast coordination of NO. The complex-formation process depends on pH, indicating that the initial product [Fe(CN)(5)NO](3)(-) is unstable, with a faster decomposition rate at lower pH. The decomposition process is associated with release of cyanide, further reaction of NO with [Fe(CN)(4)NO](2)(-), and formation of nitroprusside and other unknown products. The decomposition can be prevented by addition of free cyanide to the solutions, enabling a study of the dissociation process of NO from [Fe(CN)(5)NO](3)(-). Cyanide also acts as a scavenger for the [Fe(CN)(5)](3)(-) intermediate, giving [Fe(CN)(6)](4)(-) as a final product. From the first-order behavior, the dissociation rate constant was obtained as k(d) = (1.58 +/- 0.06) x 10(-)(5) s(-)(1) at 25.0 degrees C, I = 0.1 M, and pH 10.2. Activation parameters were found to be DeltaH(d)() = 106.4 +/- 0.8 kJ mol(-)(1), DeltaS(d)() = +20 +/- 2 J K(-)(1) mol(-)(1), and DeltaV(d)() = +7.1 +/- 0.2 cm(3) mol(-)(1), which are all in line with a dissociative mechanism. The low value of k(d) as compared to values for the release of other ligands L from [Fe(II)(CN)(5)L](n)()(-) suggests a moderate to strong sigma-pi interaction of NO with the iron(II) center. It is concluded that the release of NO from nitroprusside in biological media does not originate from [Fe(CN)(5)NO](3)(-) produced on reduction of nitroprusside but probably proceeds through the release of cyanide and further reactions of the [Fe(CN)(4)NO](2)(-) ion.  相似文献   

19.
Complexes (Salpren(tBu,tBu))Y[N(SiHMe2)2](thf) and (SALEN(tBu,tBu))La[N(SiHMe2)2](thf) (SALEN(tBu,tBu) = Salcyc(tBu,tBu) and Salpren(tBu,tBu)) were prepared from Ln[N(SiHMe2)2]3(thf)2 and H2SALEN(tBu,tBu). The yttrium complex was characterized by X-ray crystallography revealing intrinsic solid-state structural features: the metal centre is displaced by 1.05 angstroms from the [N2O2] least squares plane of a highly bent Salpren(tBu,tBu) ligand (angle(Ph,Ph) dihedral angle of 80.4(1) degrees ) and is coordinated asymmetrically by the silylamide ligand exhibiting one significant Y---(HSi) beta-agostic interaction (Y-N1-Si1, 106.90(9) degrees; Y---Si1, 3.2317(6) angstroms). Complexes (SALEN(tBu,tBu))Ln[N(SiHMe2)2](thf)n (n = 1, Sc; n = 2, Y, La) react with ammonium tetraphenylborate to form the ion pairs [(SALEN(tBu,tBu))Ln(thf)n][BPh4]. The cationisation was proven by X-ray crystal structure analyses of [(Salpren(tBu,tBu))Sc(thf)2][B(C6H5)4].2(thf) and [(Salpren(tBu,tBu))Ln(thf)3][B(C6H5)4].4(thf) (Ln = Y, La), showing an octahedral and pentagonal-bipyramidal coordination geometry, respectively.  相似文献   

20.
The octacarbonyl cation and anion complexes of actinide metals [An(CO)8]+/− (An=Th, U) are prepared in the gas phase and are studied by mass-selected infrared photodissociation spectroscopy. Both the octacarbonyl cations and anions have been characterized to be saturated coordinated complexes. Quantum chemical calculations by using density functional theory show that the [Th(CO)8]+ and [Th(CO)8] complexes have a distorted octahedral (D4h) equilibrium geometry and a doublet electronic ground state. Both the [U(CO)8]+ cation and the [U(CO)8] anion exhibit cubic structures (Oh) with a 6A1g ground state for the cation and a 4A1g ground state for the anion. The neutral species [Th(CO)8] (Oh; 1A1g) and [U(CO)8] (D4h; 5B1u) have also been calculated. Analysis of their electronic structures with the help on an energy decomposition method reveals that, along with the dominating 6d valence orbitals, there are significant 5f orbital participation in both the [An]←CO σ donation and [An]→CO π back donation interactions in the cations and anions, for which the electronic reference state of An has both occupied and vacant 5f AOs. The trend of the valence orbital contribution to the metal–CO bonds has the order of 6d≫5f>7s≈7p, with the 5f orbitals of uranium being more important than the 5f orbitals of thorium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号