首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the generalized gradient approximation to density functional theory (DFT), molecular and dissociative oxygen adsorptions on a Pu (111) surface has been studied in detail. Dissociative adsorption with a layer‐by‐layer alternate spin arrangement of the plutonium layer is found to be energetically more favorable, and adsorption of oxygen does not change this feature. Hor1 (O2 is parallel to the surface and lattice vectors) approach on the center2 (center of the unit cell, where there is a Pu atom directly below on the third layer) site, both without and with spin polarization, was found to be the preferred chemisorbed site among all cases studied with chemisorption energies of 8.365 and 7.897 eV, respectively. The second‐highest chemisorption energy occurs at the Ver (O2 is vertical to the surface) approach of the bridge site with chemisorption energies of 8.294 eV (non‐spin‐polarized) and 7.859 eV (spin‐polarized), respectively. We find that 5f electrons are more localized in the spin‐polarized case than the non‐spin‐polarized counterparts. Localization of the 5f electrons is higher in the oxygen‐adsorbed plutonium layers compared with the bare layers. The ionic part of O? Pu bonding plays a significant role in the chemisorption process, along with Pu 5f? O 2p hybridization. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

2.
Surface structures of rutile TiO(2) (011) are determined by a combination of noncontact atomic force microscopy (NC-AFM), scanning tunneling microscopy (STM), and density functional calculations. The surface exhibits rowlike (n x 1) structures running along the [01] direction. Microfaceting missing-row structural models can explain the experimental results very well. Calculated images for NC-AFM and STM are in good agreement with the experimental results. A decrease of the density of dangling bonds stabilizes the surface energy, which results in the microfaceting missing-row reconstructions.  相似文献   

3.
Ab initio Hartree–Fock calculations are reported for the chemisorption of K on Ag using three different types of clusters to model the system. Geometry optimization is done in 4 degrees of freedom. It is found that since there is an absence of complete charge transfer between the adsorbate and substrate, the interaction can be interpreted as being predominately covalent in nature.  相似文献   

4.
The (110) surface of rutile TiO2 (110) has been modeled using a density functional theory (DFT) plane‐wave pseudo‐potential method (CASTEP). In this study, 6 and 9 atomic‐layer slabs have been examined. The stoichiometric surface converges to a low‐spin solution in both cases with a density of states (DOS) similar to that for the bulk. O deficiencies are introduced by the removal of neutral O atoms thus leaving a neutral model with a surfeit of 2 e? per vacancy. This results in the partial filling of the Ti t2g conduction band orbitals and a compensatory shift in the Fermi level. The reduced surface converges to a high‐spin solution in all cases, with the excess spin located within the previously unoccupied Ti t2g orbitals. Removal of the bridging surface O atoms results in an excess spin of 2 electrons per unit cell with approximately one‐half that for removal of in‐plane surface O atoms and subsurface O atoms. The removal of O atoms from the surface leads to an increase of the band gap, with the largest increase due to the removal of in‐plane 3‐fold coordinated surface O atoms, and the smallest one due to the removal of subsurface O atoms. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

5.
We performed periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, ???=?1/3) to investigate the interaction of an individual metal atom with TiO2 and to compare it with a study previously done on MgO(100). We considered partial period of Mendeleev??s table from K to Zn. The overall evolution of the adsorption energies shows two maxima as for MgO(100). Two main differences, however, exist: the adsorption energy is much stronger and the first maximum is enhanced relative to the second one. This is attributed to the reducibility of the surface titanium cation. When the adsorbed metal is electropositive, it is oxidized under adsorption transferring electrons to titanium cations. We present the effect of introducing a Hubbard term to the gradient-corrected approximation band-structure Hamiltonian (GGA?+?U). The introduction of a reasonable Hubbard correction preserves the trends and allows localizing the electron of the reduction on Ti atoms in the near surface region. Finally, our results conclude that for heavier M atoms of the period, insertion is energetically favored relative to adsorption.  相似文献   

6.
Chemical reactions on rutile TiO2(110)   总被引:1,自引:0,他引:1  
Understanding the surface chemistry of TiO2 is key to the development and optimisation of many technologies, such as solar power, catalysis, gas sensing, medical implantation, and corrosion protection. In order to address this, considerable research effort has been directed at model single crystal surfaces of TiO2. Particular attention has been given to the rutile TiO2(110) surface because it is the most stable face of TiO2. In this critical review, we discuss the chemical reactivity of TiO2(110), focusing in detail on four molecules/classes of molecules. The selected molecules are water, oxygen, carboxylic acids, and alcohols-all of which have importance not only to industry but also in nature (173 references).  相似文献   

7.
8.
The preferential structures of small copper clusters Cun (n=2-9) and the adsorption of methanol molecules on these clusters are examined with first principles, molecular dynamics simulations. The results show that the copper clusters undergo systematic changes in bond length and bond order associated with altering their preferential structures from one-dimensional structures, to two-dimensional and three-dimensional structures. The results also indicate that low coordination number sites on the copper clusters are both the most favorable for methanol adsorption and have the greatest localization of electronic charge. The simulations predict that charge transfer between the neutral copper clusters and the incident methanol molecules is a key process by which adsorption is stabilized. Importantly, the changes in the dimensionality of the copper clusters do not significantly influence methanol adsorption.  相似文献   

9.
High resolution scanning tunneling microscopy has been applied to investigate adsorption and self-assembly of large organic molecules on the TiO(2)(011) surface. The (011) face of the rutile titania has been rarely examined in this context. With respect to possible industrial applications of rutile, quite often in a powder form, knowledge on behavior of organic molecules on that face is required. In the presented study we fill in the gap and report on experiments focused on the self-assembly of organic nanostructures on the TiO(2)(011) surface. We use three different kinds of organic molecules of potential interest in various applications, namely, PTCDA and CuPc representing flat, planar stacking species, and Violet Landers specially designed for new applications in molecular electronics. In order to reach a complete picture of molecular behavior, extended studies with different surface coverage ranging from single molecule up to 2 monolayer (ML) thick films are performed. Our results show that the adsorption behavior is significantly different from previously observed for widely used metallic templates. Creation of highly ordered molecular lines, quasi-ordered wetting layers, controlled geometrical reorientation upon thermal treatment, existence of specific adsorption geometries, and prospects for tip-induced molecule ordering and manipulation provide better understanding and add new phenomena to the knowledge on the (011) face of rutile titania.  相似文献   

10.
Fourier transform infrared spectroscopy has been employed to investigate the N(CH3)3 adsorption, thermal stability, and photochemical reactions on powdered TiO2. N(CH3)3 molecules are adsorbed on TiO2 without dissociation at 35 degrees C and are completely desorbed from the surface at 300 degrees C in a vacuum. The CH3 rocking frequencies of N(CH3)3 on TiO2 are affected via the interaction between N(CH3)3 and TiO2 surface OH groups. In the presence of O2, adsorbed N(CH3)3 decomposes thermally at 230 degrees C and photochemically under UV irradiation. In the latter case with comparative (16)O2 and (18)O2 studies, CO2(g), NCO(a), HCOO(a), and surface species containing C=N or NH(x) functional groups are identified to be the photoreaction products or intermediates. In the presence of (18)O2, the main formate species formed is HC(16)O(18)O(a). As H2O is added to the photoreaction system, a larger percentage of adsorbed N(CH3)3 is consumed. However, in the presence of (18)O2 and H2O, the amount of HC(16)O(18)O(a) becomes relatively small, compared to HC(16)O(16)O(a). A mechanism is invoked to explain these results. Furthermore, based on the comparison of isotopic oxygens in the formate products obtained from CH3O(a) photooxidation in (16)O2 and (18)O2, it is concluded that the N(CH3)3 photooxidation does not generate CH3O(a) in which the oxygen belongs to TiO2.  相似文献   

11.
The adsorption of oxygen atoms O(3P) on both ideal and hydrated rutile TiO(2)(110) surfaces is investigated by periodic density functional theory (DFT) calculations within the revised Perdew-Burke-Ernzerhof (RPBE) generalized gradient approximation and a four Ti-layer slab, with (2 x 1) and (3 x 1) surface unit cells. It is shown that upon adsorption on the TiO(2) surface the spin of the O atom is completely lost, leading to stable surface peroxide species on both in-plane and bridging oxygen sites with O-binding energies of about 1.0-1.5 eV, rather than to the kinetically unstable terminal Ti-O and terminal O-O species with smaller binding energies of 0.1-0.7 eV. Changes in O-atom coverage ratios between 1/3 and 1 molecular layer (ML) and coadsorption of H(2)O have only minor effects on the O-binding energies of the stable peroxide configurations. High O-atom diffusion barriers of about 1 eV are found, suggesting a slow recombination rate of adsorbed O atoms on TiO(2)(110). Our results suggest that the TiOOTi peroxide intermediate experimentally observed in photoelectrolysis of water should be interpreted as a single spinless O adatom on TiO(2) surface rather than as two Ti-O* radicals coupled together.  相似文献   

12.
Density functional theory (DFT) calculations performed at ONIOM DFT B3LYP/6‐31G**‐MD/UFF level are employed to study molecular and dissociative water adsorption on rutile TiO2 (110) surface represented by partially relaxed Ti25O37 ONIOM cluster. DFT calculations indicate that dissociative water adsorption is not favorable because of high activation barrier (23.2 kcal/mol). The adsorption energy and vibration frequency of both molecularly and dissociatively adsorbed water molecule on rutile TiO2 (110) surface compare well with the values reported in the literature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO(2) rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti(4+)(5c)) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E(ads) was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti(4+)(5c) closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti(3+) cations. In this case the dissociative adsorption becomes strongly favoured (E(ads) = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode.  相似文献   

14.
The interactions of Na+ and Cu+ cations with a Cu(111) surface in the presence and absence of water molecules were investigated using cluster models and ab initio methods. Adsorption in aqueous solution was modeled with one to five water molecules around the adsorbing cation. The Cu surface was described with Cu10 and Cu18 cluster models and the computational method was MP2/RECP/6-31+G. The effect of the basis set superposition error (BSSE) was taken into account with counterpoise (CP) correction, and the accuracy of HF-level results was examined. The interactions between Na+ and the Cu surface were found to be primarily electrostatic, and the energy differences among the different adsorption sites were small. The largest CP-corrected MP2 adsorption energy for the Cu18 cluster was -188 kJ/mol. When water molecules were added around it, Na+ receded from the Cu surface and finally was surrounded totally by the water molecules. The interactions between Cu+ and the Cu surface were dominated by orbital interactions, and Cu+ preferred to adsorb on sites where it could bind to more than one surface atom. The largest CP-corrected MP2 adsorption energy for the Cu18 cluster was -447 kJ/mol. Adding water molecules around it did not cause Cu+ to draw away from the surface, but instead the water molecules began to form hydrogen bonds with one another. The magnitude of BSSE was substantial in most cases. CP corrections did not, however, have a significant impact on the relative trends among the interaction energies.  相似文献   

15.
用密度泛函方法优化了锐钛矿二氧化钛及其磷掺杂锐钛矿二氧化钛的晶体结构.研究揭示了用超胞模型研究未掺杂和P掺杂锐钛矿TiO2能带结构和态密度的可行性.计算结果对于提高TiO2光催化活性有意义.  相似文献   

16.
Recent combined experimental and theoretical studies (Beck et al., Phys. Rev. Lett. 2004, 93, 036104) have provided evidence for Ti=O double-bonded titanyl groups on the reconstructed rutile TiO(2)(011)-(2 x 1) surface. The adsorption of water on the same surface is now investigated to further probe the properties of these groups, as well as to confirm their existence. Ultraviolet photoemission experiments show that water is adsorbed in molecular form at a sample temperature of 110 K. At the same time, the presence of a 3sigma state in the photoemission spectra and work function measurements indicate a significant amount of hydroxyls within the first monolayer of water. At room temperature, scanning tunneling microscopy (STM) suggests that dissociated water is present, and about 30% of the surface active sites are hydroxylated. These findings are well explained by total energy density functional theory calculations and Car-Parrinello molecular dynamics simulations for water adsorption on the titanyl model of TiO(2)(011)-(2 x 1). The theoretical results show that a mixed molecular/dissociative layer is the most stable configuration in the monolayer regime at low temperatures, while complete dissociation takes place at 250 K. The arrangement of the protonated mono-coordinated oxygens in the mixed molecular/dissociated layer is consistent with the observed short-range order of the hydroxyls in the STM images.  相似文献   

17.
This study investigates the adsorption and reactions of H(2)O(2) on TiO(2) anatase (101) and rutile (110) surfaces by first-principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H(2)O(2) and its fragments on both surfaces are analyzed. It is found that H(2)O(2) , H(2)O, and HO preferentially adsorb at the Ti(5c) site, meanwhile HOO, O, and H preferentially adsorb at the (O(2c))(Ti(5c)), (Ti(5c))(2), and O(2c) sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO(2) and the hydroxylated TiO(2), are produced with the H(2)O(2) dehydration and deoxidation, respectively. The formation of main products, H(2)O(g) and the 1/3 ML oxygen covered TiO(2) surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H(2)O(2) dehydration processes have been predicted to be 6.65 × 10(-27) T(4.38) exp(-0.14 kcal mol(-1)/RT) and 3.18 × 10(-23) T(5.60) exp(-2.92 kcal mol(-1)/RT) respectively, in units of cm(3) molecule(-1) s(-1).  相似文献   

18.
The geometries of methanol adsorbed on an oxygen-free silver surface, a promoted silver surface and an oxygen preadsorbed silver surface were optimized at the MP2 level and the energies were calculated at the MP4 level. Our calculations showed that weak physisorption of methanol occurs on the clean silver surface, but stable molecular chemisorption occurs in the other two cases. The adsorption and dissociation process of methanol was postulated to occur via two pathways, i.e. the Eley-Rideal mode and the Langmuir-Hinshelwood mode. The calculations also showed that the presence of atomic oxygen at a silver surface is essential for the cleavage of the OH bond in the methanol. The dissociation of methanol in the Langmuir-Hinshelwood mode has a small energy barrier but has no energy barrier in the Eley-Rideal mode.  相似文献   

19.
We have calculated the six-dimensional (6D) potential energy surface for H2 in front of a frozen Cu(110) surface using density functional theory for 22 H2-surface configurations and the corrugation reducing procedure to interpolate between them. We carry out classical trajectory calculations on the dissociative adsorption process and find excellent agreement with measurements. We find that it is of prominent importance to account for the rovibrational state distribution in the incident H2 beam. A straightforward analysis leads to the conclusion that the motion along the surface does not play an appreciable role in the dynamics whereas the dynamical role of molecular rotation is crucial. The latter fact precludes any interpretation of dissociation in terms of a static concept such as "barrier distributions."  相似文献   

20.
The interactions of Na(+) and Ag(+) cations with an Ag(111) surface in the presence and absence of water molecules were investigated with cluster models and ab initio methods. The Ag surface was described with two-layered Ag(10) and Ag(18) cluster models, and MP2/RECP/6-31+G(d) was used as the computational method. The effect of the basis set superposition error (BSSE) was taken into account with counterpoise (CP) correction. The interactions between Na(+) and Ag(111) surface were found to be primarily electrostatic, and the interaction energies and equilibrium distances at the different adsorption sites were closely similar. The largest CP-corrected MP2 adsorption energy for Na(+) was -190.2 kJ/mol. Owing to the electrostatic nature of the Na(+)-Ag(111) interaction, Na(+) prefers to be completely surrounded by water molecules rather than directly adsorbed to the surface. Ag(+)-Ag(111) interactions were much stronger than Na(+)-Ag(111) interactions because they were dominated by orbital contributions. The largest CP-corrected MP2 adsorption energy for Ag(+) was -358.9 kJ/mol. Ag(+) prefers to adsorb on sites where it can bind to several surface atoms, and in the presence of water molecules, it remains adsorbed to the surface while the water molecules form hydrogen bonds with one another. The CP correction had an effect on the interaction energies but did not change the relative trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号