首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.  相似文献   

3.
Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different charge densities (fraction of carboxylated subunits: 0.1, 0.26, 0.51, and 0.56) was used to investigate the effect of charge density on the properties of mixed protein/polysaccharide adsorbed layers at air/water interfaces. With all pullulan samples, soluble complexes with beta-lactoglobulin could be formed at low ionic strength, pH 4.5. It was shown that the higher was the pullulan charge density, the more the increase of surface pressure in time was retarded as compared to that for pure beta-lactoglobulin. The retardation was even more pronounced for the development of the dilatational modulus. The lower dilatational modulus can be explained by the ability of the polysaccharides to prevent the formation of a compact protein layer at the air/water interface due to electrostatic repulsion. This ability of the polysaccharides to prevent "layer compactness" increases with the net negative charge of the complexes. If charge density is sufficient (> or = 0.26), polysaccharides may enhance the cohesion between complexes within the adsorbed layer. The charge density of polysaccharides is shown to be a dominant regulator of both the adsorption kinetics as well as the resulting surface rheological behavior of the mixed layers formed. These findings have significant value for the application of complex protein-polysaccharide systems.  相似文献   

4.
The elasticity and molecular surface characteristics of Escherichia coli JM109 were investigated via atomic force microscopy (AFM) in solvents expressing different polarities. The nature of bacterial adhesion and surface characteristics was probed in formamide, water, and methanol, with dielectric constants of 111, 80, and 33, respectively. Solvent polarity affected the elasticity of the bacterium, the conformation of the cell surface biopolymers, the height of the surface biopolymers, and measured adhesion forces between the bacterium and silicon nitride. By applying the Hertz model to force-indentation data, we determined that the Young's modulus was greatest in the least polar solvent, with values of 182 +/- 34.6, 12.8 +/- 0.1, and 0.8 +/- 0.3 MPa in methanol, water, and formamide, respectively. The thickness of the biopolymer brush layer on the bacterial surface was quantified using a steric model, and these values increased as polarity increased, with values of 27, 93, and 257 nm in methanol, water, and formamide, respectively. The latter results suggest that highly polar conditions favor extension of the biopolymer brush layer. Cross-sectional analysis performed on tapping mode images of the bacterial cells in methanol, water, and formamide further supported this hypothesis. The image height values are larger, since the image analysis measures the height of the bacterium and the polymer layer, but the trend with respect to solvent polarity was the same as was obtained from the steric model of the brush length. Measured adhesion forces scaled inversely with solvent polarity, with greatest adhesion observed in the least polar solvent, methanol. The combined conformational changes to the bacterial surface and biopolymer layer result in different presentations of macromolecules to a substrate surface, and therefore affect the adhesion forces between the bacterial molecules and the substrate. These results suggest that polarity of the solvent environment can be manipulated as a design parameter to control or modify the bacterial adhesion process.  相似文献   

5.
This article serves both as a review of polysaccharides as gelling and thickening agents and as an introduction to polysaccharides, other than starch and cellulose, their source and extraction, and how molecular detail is reflected in their macromolecular and supramolecular properties. The whole is summarised for workers in the synthetic polymer area interested in new “green” polymers. We also introduce results for a new polysaccharide extracted from a Nigerian tree pod, and describe details of its structural and physicochemical characterisation including light scattering and rheological measurements.  相似文献   

6.
AFM probing of microbial cells in liquid environments usually requires them to be physically or chemically attached to a solid surface. The fixation mechanisms may influence the nanomechanical characterization done by force curve mapping using an AFM. To study the response of a microbial cell surface to this kind of local measurement this study attempts to overcome the problem associated to the uncertainties introduced by the different fixation treatments by analysing the surface of Staphylococcus epidermidis cells naturally (non-artificially mediated) immobilised on a glass support surface. The particularities of this natural bacterial fixation process for AFM surface analysis are discussed in terms of theoretical predictions of the XDLVO model applied to the systems bacteria/support substratum and bacteria/AFM tip immersed in water. In this sense, in the first part of this study the conditions for adequate natural fixation of three S. epidermidis strains have been analyzed by taking into account the geometries of the bacterium, substrate and tip. In the second part, bacteria are probed without the risk of any possible artefacts due to the mechanical or chemical fixation procedures. Forces measured over the successfully adhered cells have (directly) shown that the untreated bacterial surface suffers from a combination of both reversible and non-reversible deformations during acquisition of force curves all taken under the same operational conditions. This is revealed directly through high-resolution tapping-mode imaging of the bacterial surface immediately following force curve mapping. The results agree with the two different types of force curves that were repeatedly obtained. Interestingly, one type of these force curves suggests that the AFM tip is breaking (rather than pushing) the cell surface during acquisition of the force curve. In this case, adhesive peaks were always observed, suggesting a mechanical origin of the measured pull-off forces. The other type of force curves shows no adhesive peaks and exhibits juxtaposing of approaching and retraction curves, reflecting elastic deformations.  相似文献   

7.
In order to develop a robust and easy-to-use technique for characterization of bacterial polysaccharides, a pseudo-hydrolysis strategy was investigated. Based on in-source collision-induced dissociation, polysaccharide molecular ions were fragmented within the orifice-skimmer region of an electrospray ionization (ESI) mass spectrometer. The fragment ions thus generated were then analyzed similarly to the conventional ESI mass spectrometry approach. MS/MS scanning was applied to obtain product-ion spectra of the primary fragments for sequencing. To further improve the sensitivity and separation of polysaccharides from other components in the samples, a pressure-assisted capillary electrophoresis/mass spectrometry (CE/MS) system was employed. Using bacterial polysaccharides as model compounds, the mass spectra obtained for polysaccharide repeating units generated through chemical hydrolysis and in-source fragmentation were directly compared, both in positive and negative ion modes. With the additional separation of impurities provided by CE, the success of this technique has been demonstrated for structural analysis of O-chain polysaccharides (O-PS) and capsular polysaccharides (CPS). In-source fragmentation was applied to promote the formation of structurally relevant repeating units of heterogeneous CPS that would remain undetected using conventional ESI conditions. This approach was proven to be particularly useful for probing the subtle structural differences in monosaccharide composition and functionalities arising across bacterial serotypes.  相似文献   

8.
Gao P  Xu G  Shi X  Yuan K  Tian J 《Electrophoresis》2006,27(9):1784-1789
The rapid detection of pathogenic bacteria is extremely important in biotechnology and clinical diagnosis. CE has been utilized in the field of bacterial analysis for many years, but to some extent, simultaneous separation and identification of certain microbes from complex samples by CE coupled with UV detector is still a challenge. In this paper, we propose a new strategy for rapid separation and identification of Staphylococcus aureus (S. aureus) in bacterial mixtures by means of specific mAb-coated latex coupled with CZE. An appropriate set of conditions that selectively isolated S. aureus from the microorganisms Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were established. S. aureus could be differentiated from the others by unique peaks in the electropherograms. The validity was also confirmed by LIF with antibodies specific to both the latex and the microbial cells. The LOD is as low as 9.0 x 10(5) colony forming unit/mL. We have also utilized this technology to identify S. aureus in a stool sample coming from a healthy volunteer spiked successfully with S. aureus. This CZE-UV technique can be applied to rapid diagnosis of enteritis caused by S. aureus or other bacterial control-related fields needing rapid identification of target pathogens from microbial mixtures. In theory, this method is suitable for the detection of any bacterium as long as corresponding bacterium-specific antibody-coated latex is available.  相似文献   

9.
A synthetic toolbox for the introduction of aldehydo and hydrazido groups into the polysaccharides hyaluronic acid, alginate, dextran, pullulan, glycogen, and carboxymethyl cellulose and their use for hydrogel formation is reported. Upon mixing differently functionalized polysaccharides derived from the same natural precursor, hydrazone cross‐linking takes place, which results in formation of a hydrogel composed of one type of polysaccharide backbone. Likewise, hydrogels based on two different polysaccharide strands can be formed after mixing the corresponding aldehydo‐ and hydrazido‐modified polysaccharides. A second line of these studies paves the way to introduce a biomedically relevant ligand, namely, the adhesion factor cyclic RGD pentapeptide, by using an orthogonal click reaction. This set of modified polysaccharides served to create a library of hydrogels that differ in the combination of polysaccharide strands and the degree of cross‐linking. The different hydrogels were evaluated with respect to their rheological properties, their ability to absorb water, and their cytotoxicity towards human fibroblast cell cultures. None of the hydrogels studied were cytotoxic, and, hence, they are in principal biocompatible for applications in tissue engineering.  相似文献   

10.
A quantitative method for measuring the shear force required to detach individual adhered bacteria using atomic force microscopy (AFM) was developed. By determining the total compression of the cantilever during cell detachment events, a more accurate means of calculating the applied lateral force necessary to remove individual cells was achieved compared to previous methods. In addition, a tunable assay for monitoring the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus adhesion strength was employed. The accumulation of force measurements over time allowed for the characterization of adhesion strength kinetics. P. aeruginosa reinforced its adhesion to the surface at a rate 7-fold faster than for S. aureus; the average adhesion strength of P. aeruginosa was larger than that of S. aureus at corresponding time points. Adhered cells of the same species and strain demonstrated a range of adhesion forces that broadened with time, indicating that the change in adhesion strength does not proceed uniformly.  相似文献   

11.
The rheology of bacterial biofilms at the micron scale is an important step to understanding the communal lifecycles of bacteria that adhere to solid surfaces, as it measures how they mutually adhere and desorb. Improvements in particle-tracking software and imaging hardware have allowed us to successfully employ particle-tracking microrheology to measuring single-species bacterial biofilms, based on Staphlococcus aureus and Pseudomonas aeruginosa. By tracking displacements of the cells at a range of timescales, we separate active and thermal contributions to the cell motion. The S. aureus biofilms in particular show power-law rheology, in common with other dense colloidal suspensions. By calculating the mean compliance of S. aureus biofilms, we observe them becoming less compliant during growth, and more compliant during starvation. The biofilms are rheologically inhomogeneous on the micron scale, as a result of the strength of initial adhesion to the flow cell surface, the arrangement of individual bacteria, and larger-scale structures such as flocs of P. aeruginosa. Our S. aureus biofilms became homogeneous as a function of height as they matured: the rheological environment experienced by a bacterium became independent of how far it lived from the flow cell surface. Particle-tracking microrheology provides a quantitative measure of the "strength" of a biofilm. It may therefore prove useful in identifying drug targets and characterizing the effect of specific molecular changes on the micron-scale rheology of biofilms.  相似文献   

12.
We report a new strategy for differential delivery of antimicrobials to bacterial infection sites with a lipase-sensitive polymeric triple-layered nanogel (TLN) as the drug carrier. The TLN was synthesized by a convenient arm-first procedure using an amphiphilic diblock copolymer, namely, monomethoxy poly(ethylene glycol)-b-poly(ε-caprolactone), to initiate the ring-opening polymerization of the difunctional monomer 3-oxapentane-1,5-diyl bis(ethylene phosphate). The hydrophobic poly(ε-caprolactone) (PCL) segments collapsed and surrounded the polyphosphoester core, forming a hydrophobic and compact molecular fence in aqueous solution which prevented antibiotic release from the polyphosphoester core prior to reaching bacterial infection sites. However, once the TLN sensed the lipase-secreting bacteria, the PCL fence of the TLN degraded to release the antibiotic. Using Staphylococcus aureus (S. aureus) as the model bacterium and vancomycin as the model antimicrobial, we demonstrated that the TLN released almost all the encapsulated vancomycin within 24 h only in the presence of S. aureus, significantly inhibiting S. aureus growth. The TLN further delivered the drug into bacteria-infected cells and efficiently released the drug to kill intracellular bacteria. This technique can be generalized to selectively deliver a variety of antibiotics for the treatment of various infections caused by lipase-secreting bacteria and thus provides a new, safe, effective, and universal approach for the treatment of extracellular and intracellular bacterial infections.  相似文献   

13.
An electrodynamics-based model was formulated for simulation of ion diffusion in microbial polysaccharides. The fixed charges and electrostatic double layers that may associate with microbial polysaccharides and their effects on ion diffusion were explicitly built into the model. The model extends a common multicomponent ion diffusion formulation that is based on irreversible thermodynamics under a zero ionic charge flux condition, which is only applicable to the regions without fixed charges and electrostatic double layers. An efficient numerical procedure was presented to solve the differential equations in the model. The model well described key features of experimental observations of ion diffusion in negatively charged microbial polysaccharides including accelerated diffusive transport of cations, exclusion of anions, and increased rate of cation transport with increasing negative charge density. The simulated diffusive fluxes of cations and anions were consistent with a cation exchange diffusion concept in negatively charged polysaccharides at the interface of plant roots and soils; and the developed model allows to mathematically study such diffusion phenomena. An illustrative example was also provided to simulate dynamic behavior of ionic current during ion diffusion within a charged bacterial cell wall polysaccharide and the effects of the ionic current on the compression or expansion of the bacterial electrostatic double layer at the interface of the cell wall and bulk solution.  相似文献   

14.
This study investigated the role of phosphate in the adhesion of bacteria (Staphylococcus aureus ATCC 10537) to iron-coated surfaces. Column experiments were performed at phosphate concentrations ranging from 0.0 to 2.0 mM. Bacterial breakthrough curves were obtained by monitoring effluent, and mass recovery and sticking efficiency were quantified from these curves. At phosphate concentrations between 0 and 0.5 mM, bacterial attachment to iron-coated sand decreased with increasing phosphate concentration (mass recovery increased from 14.0 to 86.3%), possibly due to charge modification of the coated sand from positive to negative by adsorbed phosphate ions. Between 0.5 and 2.0 mM, however, bacterial attachment increased with increasing phosphate concentration (mass recovery decreased from 86.3 to 41.3%), possibly due to compression of the electrical double layer between bacteria and phosphate-adsorbed/negatively charged surfaces by free phosphate ions. This study demonstrates that phosphate can play different roles in bacterial interaction with iron-coated surfaces depending on its concentration.  相似文献   

15.
A high performance liquid chromatographic (HPLC) method has been developed to permit the rapid comparison of acidic polysaccharides of diverse compositions and the sensitive determination of their constituents. It is based on two combined analyses of the polysaccharide hydrolysates--a separation of the released compounds by ion-moderated partition chromatography with UV detection at two wavelengths and a separation of the sugar dansylhydrazine derivatives by reversed phase chromatography. The former permits identification and quantitation of uronic and carboxylic acids, the latter permits more sensitive and specific determination of the neutral aldoses. Some bacterial exopolysaccharides have been used to demonstrate the validity of this HPLC procedure for the chemical characterization of uronic acid-containing polysaccharides. This method appears to be useful for studying capsular polysaccharides, which are involved in the evasion of phagocytosis by pathogenic bacteria.  相似文献   

16.
This is an investigation of the effect of paper-yellowing inhibitors on the rheological, colloidal, and interfacial properties of paper-coating liquids and the associated changes in the liquid surface microstructure. In addition to rheological measurements, we measured the zeta potential and imaged the surface microstructure of coating liquids by transmission electron microscopy (TEM) using an advanced Pt/C replica technique. The zeta potential is related to the concentration of added inhibitors. The images reveal interparticle structuring with increasing concentration of inhibitors. The structuring is related to the interaction between the coating liquids and the inhibitors. It was also found that the viscosity and the elastic modulus increased with inhibitor concentration. The significant changes in mixture properties due to the additives show the importance of the rheological and surface characterization of liquids and the ensuing effect on the corresponding engineering process.  相似文献   

17.
The atomic force microscope (AFM) has been used to examine the stickiness of bacteria on the basis of the analysis of approach and retraction force curves between the AFM tip and the bacterial surface. One difficulty in analyzing approach curve data is that the distance between the AFM tip and the surface of the bacterium is difficult to define. The exact distances are difficult to determine because the surface of the bacterium deforms during force imaging, producing a highly nonlinear region in the approach curve. In this study, AFM approach and retraction curves were obtained using a colloid probe AFM for three strains of Escherichia coli (D21, D21f2, and JM109). These strains differed in their relative adhesion to glass surfaces, on the basis of measurements of sticking coefficients in packed bed flow through column tests. A gradient force curve analysis method was developed to model the interactions between the colloid probe and a surface. Gradient analysis of the approach curve revealed four different regions of colloid-surface interactions during the approach and contact of the probe with the bacterial surface: a noninteraction region, a noncontact phase, a contact phase, and a constant compliance region. The noncontact phase, which ranged from 28 to 59 nm for the three bacterial strains, was hypothesized to arise primarily from steric repulsion of the colloid by extracellular polymers on the bacterial surface. The contact phase, spanning 59-113 nm, was believed to arise from the initial pressure of the colloid on the outer membrane of the cell. The constant compliance region likely reflected the response of the colloid probe to the stiff peptidoglycan layer that confers strength and rigidity to gram negative bacteria. It was shown that the sticking coefficients reported for the three E. coli strains were correlated with the length of the noncontact phase but not the properties of the other phases. Sticking coefficients were also not correlated with any parameters determined from retraction force curves such as pull-off distances or separation energies. These results show that gradient analysis is useful for studying the contribution of the length of the exopolymers on the cell surface to bacterial adhesion to glass surfaces.  相似文献   

18.
The occurrence of lyotropic mesophases in solutions of various polysaccharides, such as non-ionic schizophyllan and anionic xanthan, was demonstrated by means of polarizing microscopy. In contrast to synthetic polymers where the formation of liquid-crystalline phases has been attributed to the presence of mesogenic groups in the main- or side-chain, here a helical structure is a prerequisite for the formation of mesophases. It was then shown that the stability of the helix is dependent on the chemical structure and the arrangement of the side groups. Apart from their optical anisotropy, some lyotropic mesophases are distinguished by extraordinary viscous and elastic properties (e.g. maximum behaviour of viscosity). The viscoelastic material functions were determined by rheological methods. A precise characterization of the chemical and steric microstructure should provide information on the ability of polysaccharides to form mesophases. Determination of the chemical microstructure (quaternary polymer) was carried out by 1H NMR spectroscopy after ultrasonic degradation. Low- and multi-angle laser light scattering were employed for the determination of the steric microstructure which indicates an expanded semi-flexible structure. The experimental results were compared with those from molecular modelling.  相似文献   

19.
Polysaccharide hydrogels have found several applications in the food industry, in biomedicine, and cosmetics. The study of polysaccharide hydrogels offers a challenging scenario of intrinsic heterogeneities in the crosslinking density and large time and space ranges that characterize a number of dynamic processes entailing segmental motions, water diffusion, and small-molecule diffusion. The understanding of such complex features is essential because of the extensive use of polysaccharidic moieties in the food industry, biomedical devices, and cosmetics. The study of phenomena occurring at the nanoscale to the mesoscale requires the combination of investigative tools to probe different time and distance scales and the structural characterization of the networks by established methodologies such as swelling and elastic modulus measurements. Elastic and quasielastic neutron scattering, and fluorescence recovery after photobleaching are emerging methodologies in this field. In this feature article we focus, somewhat arbitrarily, on these new approaches because other techniques, such as low-resolution proton NMR relaxometry and rheology, have been already described thoroughly in the literature. Case examples of polysaccharide hydrogels studied by neutron scattering and fluorescence recovery are presented here as contributions to the comprehension of the dynamic behavior of physical and chemical hydrogels based on polysaccharides. Quasielastic incoherent neutron scattering experiment on a Sephadex hydrogel sample at different temperatures.  相似文献   

20.
The anti-microbial activities of seven protic ionic liquids(ILs) against Escherichia coli and Staphylococcus aureus were studied by a micro-calorimetric method at 310 K.The bacterial growth rate constants were determined based on the bacterial growth power-time curves,andminimum biocidal concentrations were estimated.The results indicate that the protic ILs studied show inhibitory activities on the bacteria,implying a potential eco-toxicity to the microorganisms in the water system.Moreover,the inhibition e...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号