首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on structure prediction method, the machine learning method is used instead of the density functional theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained a machine learning (ML) model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young’s modulus) and confirmed that the accuracy is better than that of AFLOW–ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young’s modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm–C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm–C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.  相似文献   

2.
Tonghe Ying 《中国物理 B》2022,31(7):78402-078402
A machine learning (ML) potential for Au clusters is developed through training on a dataset including several different sized clusters. This ML potential accurately covers the whole configuration space of Au clusters in a broad size range, thus expressing a good performance in search of their global minimum energy structures. Based on our potential, the low-lying structures of 17 different sized Au clusters are identified, which shows that small sized Au clusters tend to form planar structures while large ones are more likely to be stereo, revealing the critical size for the two-dimensional (2D) to three-dimensional (3D) structural transition. Our calculations demonstrate that ML is indeed powerful in describing the interaction of Au atoms and provides a new paradigm on accelerating the search of structures.  相似文献   

3.
The behavior of elastic (Young’s modulus) and microplastic properties of titanium depending on the initial structure and subsequent severe plastic deformation that transforms the material (concerning the grain size) into the submicrocrystalline structural state has been studied. It has been shown that, to a great extent, different initial structures of the metal predetermine its elastic properties after deformation.  相似文献   

4.
Physics of the Solid State - The Young’s modulus of a finite-sized zigzag carbon nanotube-based ribbon-like columnar graphene is theoretically studied. The dependence of elastic...  相似文献   

5.
李青坤  孙毅  周玉  曾凡林 《物理学报》2012,61(4):43103-043103
为探索新型高强度材料, 使用第一性原理方法研究了hcp-C3碳体环材料的晶体结构、电子性质与力学性质. 结构计算与电子性质分析表明, 基于特殊的分子结构, 碳体环结构中出现了变形的sp3杂化形式. 这使得hcp-C3碳体环结构中力学特性具有明显的方向依赖性. 力学性质计算表明, 沿着[0001]晶向, 碳体环结构的弹性模量达到1033 GPa, 抗拉强度达到124.17 GPa, 抗压强度达到381.83 GPa, 沿[2110]晶向的抗压强度达到了458.34 GPa, 从而显示了hcp-C3碳体环材料优秀的力学性质. hcp-C3碳体环材料可作为新型的高强度材料而使用.  相似文献   

6.
悬丝耦合音频共振法的原理与检验   总被引:2,自引:1,他引:1  
罗来龙 《大学物理》2006,25(7):25-27,42
提出了悬丝耦合音频共振的实验方法,用来测定材料的杨氏模量、剪切模量和泊松比,并分析了测量误差来源,进而运用此方法测定了25号碳钢(退火)的杨氏模量和剪切模量.  相似文献   

7.
In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.  相似文献   

8.
An atomistic simulation method is adopted to investigate the elastic characteristics of defect-free single-layered graphene sheet (SLGS). To this end, the equivalent structural beam is employed to model interatomic forces of the covalently bonded carbon atoms. The beam properties are computed by considering the covalent bond stiffnesses. To calculate the Young’s modulus, shear modulus and Poisson’s ratio of the SLGS, the equivalent continuum sheet model is proposed and the effect of chirality on the SLGS elastic properties is examined. It is perceived that there exists a good agreement between the atomistic modeling results and the data available in the literature.  相似文献   

9.
Structural stability and electronic properties of polar intermetallic CaZn2 and SrZn2 in both CeCu2-type and MgZn2-type structures have been investigated using first-principles method. The calculated equilibrium lattice parameters agree closely with the available experimental and other theoretical results. In terms of formation enthalpy, it is discovered that the present compounds with CeCu2-type structure are energetically more stable than that with MgZn2-type. They are all mechanically stable according to the criteria of elastic stability. In particular, we have investigated the pressure effect on the compressive behaviour and structural stability of each compound. Subsequently, the bulk modulus, shear modulus, Young’s modulus, theoretical hardness, Poisson’s ratio and Debye temperature in the ground state can be estimated using Voigt–Reuss–Hill homogenization method. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young’s modulus. Finally, the electronic structures are determined to reveal the bonding characteristics of considered phases.  相似文献   

10.
The structural, electronic and elastic properties of Rb–As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3 As in Na3As, Cu3 P and Li3Bi structures, and Rb5 As4 in the A5B4 structure) are investigated with the generalized gradient approximation in the frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan’s equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young’s modulus, the shear modulus, Poisson’s ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated.  相似文献   

11.
Run-Yue Li 《哲学杂志》2016,96(10):972-990
First principles calculations were performed to systematically investigate structure properties, phase stability and mechanical properties of MB (M = Cr, Mo, W) monoborides in orthorhombic and tetragonal structures. The results of equilibrium structures are in good agreement with other available theoretical and experimental data. The elastic properties, including bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by the Voigt-Reuss-Hill approximation. All considered monoborides are mechanically stable. The results of elastic anisotropies show that elastic anisotropy of orthorhombic structure is larger than that of tetragonal structure. Moreover, the minimum thermal conductivities were also estimated using the Cahill’s model, and the results indicate that the minimum thermal conductivities show a dependence on directions.  相似文献   

12.

The machining process is primarily used to remove material using cutting tools. Any variation in tool state affects the quality of a finished job and causes disturbances. So, a tool monitoring scheme (TMS) for categorization and supervision of failures has become the utmost priority. To respond, traditional TMS followed by the machine learning (ML) analysis is advocated in this paper. Classification in ML is supervised based learning method wherein the ML algorithm learn from the training data input fed to it and then employ this model to categorize the new datasets for precise prediction of a class and observation. In the current study, investigation on the single point cutting tool is carried out while turning a stainless steel (SS) workpeice on the manual lathe trainer. The vibrations developed during this activity are examined for failure-free and various failure states of a tool. The statistical modeling is then incorporated to trace vital signs from vibration signals. The multiple-binary-rule-based model for categorization is designed using the decision tree. Lastly, various tree-based algorithms are used for the categorization of tool conditions. The Random Forest offered the highest classification accuracy, i.e., 92.6%.

  相似文献   

13.
We have investigated the structural, elastic and electronic properties of the anti-perovskite TlNCa3 using ab initio calculations within the generalized gradient approximation and the local density approximation for the exchange–correlation potential. The lattice constant, bulk modulus, elastic constants and their pressure dependence, energy band structures, density of states and charge density distribution are calculated and analyzed in comparison with the available experimental and theoretical data. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, Lamé’s coefficients, average sound velocity and Debye temperature are numerically estimated for ideal polycrystalline TlNCa3 aggregates in the framework of the Voigt–Reuss–Hill approximation. This is the first theoretical prediction of the elastic constants and their related properties for TlNCa3 that requires experimental confirmation.  相似文献   

14.
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper.Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process,which inevitably generates the undercut of the nanobeam clamping.In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut,dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L,which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data.By using a least-square fit expression including △L,we finally extract Young’s modulus from the measured resonance frequency versus effective length dependency and find that Young’s modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon.This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm.  相似文献   

15.
A technique is developed for measuring the modulus of elasticity of a material with a Nanoscan scanning force microscope on the basis of measuring the dependence of probe vibration frequency on the penetration depth of the needle into the specimen. This technique makes it possible to study materials with elastic moduli from 50 to 1000 GPa. The Young moduli of dense films of carbon nanotubes oriented at angles of 45° and 90° to the quartz substrate are measured. From their ratio, the Young modulus in the direction perpendicular to the tubes and the anisotropy of the elastic moduli are determined. A comparison of these values with the corresponding values obtained for a nanotube film deposited on a silicon substrate is carried out. On the basis of this comparison, a conclusion is made concerning the interaction between single-layer nanotubes and between nanotubes in a mixture of single-layer and multilayer ones.  相似文献   

16.
The amplitude, temperature, and time dependences of the Young’s modulus and internal friction (ultrasonic attenuation) of a eucalyptus-based carbon biomatrix intended for preparing biomorphic silicon carbide ceramics were studied. Adsorption and desorption of molecules of the ambient medium (air) was shown to determine, to a considerable extent, the effective Young’s modulus and acoustic vibration decrement of a specimen. A doublet maximum in the temperature dependence of ultrasonic attenuation was observed at a temperature close to the sublimation temperature of solid CO2. The microplastic properties of the material were estimated from acoustic measurement data.  相似文献   

17.
ABSTRACT

In order to better understand and elucidate the structural stability of perovskite materials, the lattice parameters and tolerance factors of three crystal structures of perovskite materials are calculated based on the first principle of density functional theory. We find that the perovskite crystal structures are relatively stable and is consistent with the experimental facts as the tolerance factor 0.81?<?T?<?1.11. The elastic modulus of three crystal structures of MAPbI3, FAPbI3 and the elastic modulus of FA0.75Cs0.25Sn0.5PB0.5I3 are studied. By Voigt-Reuss-Hill approximation, the elastic properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are obtained. From the elastic modulus Cij, we can find that the other six kinds of crystal structures are relatively stable except for the orthogonal structure of MAPbI3 (c). The ductility and brittle toughness of the material are also discussed by B/G and Poisson’s ratio. It is found that MAPbI3 (a) is the hardest and FAPBI3 (a) the weakest. Form the three-dimensional surface view of Young's modulus it is found that their dependence in three-dimensional direction is spherical for an isotropic system. The degree of deviation of the Young's modulus sphere reflects the anisotropy of crystal structures. The degree of elastic anisotropy of organic–inorganic perovskite materials follows the order of FAPbI3(c)?>?MAPbI3(a)?>?FA0.75?Cs0.25?Sn0.5Pb0.5I3?>?FAPbI3(a)?>?MAPbI3(b)?>?MAPbI3(c)?>FAPbI3(b). Furthermore, by the adsorption energies and density of states (DOS) of these seven crystals for water molecules, the reasons why perovskite materials are easily denatured in high humidity environment were explored. The results show that perovskite materials are easy to denaturate in high humidity environment.  相似文献   

18.
An investigation of a new method for measuring fibre material properties from ultrasonic attenuation in a dilute suspension of synthetic fibres of uniform geometry is presented. The method is based on inversely solving an ultrasound scattering and absorption model of suspended fibres in water for the material properties of the fibres. Experimental results were obtained from three suspensions of nylon 66 fibres each with different fibre diameters. A forward solution to the model with reference material values is compared to experimental data to verify the model’s behaviour. Estimates of the shear and Young’s modulus, the compressional wave velocity, Poisson’s ratio and loss tangent from nylon 66 fibres are compared to data available from other sources. Experimental data confirms that the model successfully predicts that the resonance features in the frequency response of the attenuation are a function of diameter. Consistent estimated values for the compressional wave velocity and the Poisson’s ratio were found to be difficult to obtain but in combination gave values of shear modulus within previously reported values and with low sensitivity to noise. Young’s modulus was underestimated by 54% but was consistent and had low sensitivity to noise. The underestimation is believed to be caused by the assumption of isotropic material used in the model. Additional tests on isotropic fibre would confirm this. Further analysis of the model sensitivity and the reasons for the resonance features are required.  相似文献   

19.
A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite?s axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite.  相似文献   

20.
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod- ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号