首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
原子转移自由基聚合及可控自由基聚合   总被引:11,自引:0,他引:11  
以作者在原子转移自由基聚合领域的研究成果为主导,结合国内外文献,对近年来出现的颇具影响的可控自由基聚合体系与进行了评述与展望。  相似文献   

2.
尽管被公认在自由基聚合中往往起着缓聚、阻聚或链转移的作用,越来越多的结果表明,在某些情况下,如高温、高压,或当某些催化剂存在时,氧气分子(O2)可以参与甚至加速乙烯基单体的自由基聚合。本文综述了上世纪90年代以来,O2参与的乙烯基单体的热/光诱导自由基聚合、化学引发自由基聚合、氧载体催化自由基聚合以及可逆加成-断裂链转移自由基聚合。以上结果表明,在上述情况下,O2,作为一个普通不饱和单体,可以与苯乙烯、甲基丙烯酸甲酯等乙烯基单体形成交替共聚物(聚过氧化物),而此类聚过氧化物均可裂解为自由基。  相似文献   

3.
原子转移自由基聚合(ATRP)应用于乳液聚合体系的主要挑战在于如何同时保证乳液的稳定性和聚合反应的可控性。本文主要对乳液ATRP体系中影响聚合反应可控性和乳液稳定性的各种因素、乳液ATRP的机理和乳液ATRP的应用等方面进行了综述。表面活性剂亲水亲油性及其亲水亲油基团的化学性质、催化剂/配体在油/水两相之间的分配行为、引发剂的溶解性、反应温度以及各组分的浓度是影响反应可控性和乳液稳定性的主要因素。各组分在油/水两相中的分配行为使得乳液ATRP的机理比传统乳液聚合更加复杂。乳液原子转移自由基聚合结合了活性自由基聚合和乳液聚合的优点,在理论研究和工业生产上具有很大的应用前景。  相似文献   

4.
原子转移自由基聚合(ATRP)是目前为止最具工业化应用前景的“活性”/可控自由基聚合之一。近年来对其广泛的研究使这一技术逐渐向着“提高可操作性”与“尽可能地减少金属催化剂用量”方面发展;与此同时,诞生了不同催化体系的ATRP衍生技术,如反向原子转移自由基聚合(RATRP)、正向反向同时引发的原子转移自由基聚合(SR&NI ATRP)、引发剂连续再生催化剂原子转移自由基聚合(ICAR ATRP)、电子转移生成催化剂的原子转移自由基聚合(AGET ATRP)和电子转移再生催化剂原子转移自由基聚合(ARGET ATRP)等多种基于ATRP的新方法。本文概述了这几种ATRP体系的发展历程与基本原理,并对其国内外的最新研究进展进行了综述。  相似文献   

5.
原子转移自由基聚合的研究进展   总被引:7,自引:2,他引:7  
综述了原子转移自由基“活性”聚合研究的进展,包括采用的各种引发体系,聚合反应机理,动力学研究以及所合成的各种模型聚合物。通过原子 转移自由基聚合可以方便地合成各种结构的模型聚合物,2包括窄分的均聚物,交替,无规和渐变共聚物、特殊链端的聚合物,嵌段和接枝共聚物等。  相似文献   

6.
通过苯乙烯或甲基丙烯酸甲酯与含氮氧稳定自由基的单体进行原子转移自由基共聚合 ,研究了共聚合反应的条件及动力学 ,成功地合成出侧链含TEMPO基团的氮氧稳定自由基聚合大分子引发剂 .大分子引发剂的结构通过核磁共振谱图进行确证 ,并对共聚合反应的历程进行了探讨  相似文献   

7.
王慧悦  胡欣  胡玉静  朱宁  郭凯 《化学进展》2022,34(8):1796-1808
原子转移自由基聚合(ATRP)是制备分子量以及分散度可控聚合物的重要途径。然而,受制于除氧步骤复杂、金属催化剂残留以及单体适用范围有限等因素,ATRP难以应用于批量制备功能化聚合物/共聚物材料,限制了其进一步应用。近年来提出和发展的酶催化聚合,为高效便捷除氧、拓展单体适用范围以及制备具有特殊(纳米)结构的纯净聚合物/共聚物提供了新思路。本文详细介绍了酶的结构与催化机理,以酶的种类进行分类,系统总结了具有不同结构的酶催化体系(包括过氧化辣根酶、血红蛋白、血红素、漆酶等)的催化机理、适用单体、优缺点及应用等;综述了酶以及酶模拟物催化ATRP体系的发展现状;最后,对酶催化ATRP的发展前景和挑战进行了探讨和展望。  相似文献   

8.
甲基丙烯酸甲酯的原子转移自由基悬浮聚合   总被引:3,自引:0,他引:3  
以 1 苯基氯乙烷为引发剂 ,氯化亚铜为催化剂 ,2 ,2 联吡啶为配体 ,外加搅拌 ,氮气保护下进行了甲基丙烯酸甲酯 (MMA)在 80℃下的原子转移悬浮聚合 .结果表明 ,聚合反应符合对单体浓度为一级的动力学关系 .经计算聚合体系的增长自由基浓度为 5 .74× 10 - 8mol L .聚合物分子量随转化率呈线性增加 ,分子量分布较窄 ,Mw Mn 在 1.37~ 1.40之间 .还以AIBN为引发剂 ,在三氯化铁和三苯基膦存在下进行了MMA的反向原子转移本体和悬浮聚合研究 .结果证明本体聚合具有好的可控特征 ,分子量随转化率呈线性增长 ,分子量分布指数在 1.2 7~ 1.31之间 .聚合反应速率较快 ,聚合体系中的增长自由基浓度较高 ,为 1.6 4× 10 - 7mol L .而在此催化体系下的悬浮聚合则完全失去了活性特征  相似文献   

9.
原子转移自由基聚合合成耐热性共聚物   总被引:3,自引:0,他引:3  
自 1 995年第一篇有关过渡金属催化的原子转移自由基聚合 (ATRP)论文发表以来 ,国内外许多研究者都纷纷开展这方面的工作 ,人们已用该法合成了各类指定结构的聚合物[1~ 6] ,选用合适的引发剂比较容易合成出具有良好加工流动性的星型和超支化聚合物[2 ,3,6] .N 取代马来酰亚胺由于其环状结构而被广泛用于自由基共聚合制备耐热性聚合物[7~ 9] ,但N 取代马来酰亚胺的引入将降低聚合物的加工流动性 ,若能实现含N 取代马来酰亚胺单体结构的可控ATRP共聚合 ,利用多官能团引发剂如四溴甲基苯合成出星型耐热性共聚物 ,将可望同时改善聚…  相似文献   

10.
张晓鸿  袁丽  杨东  胡建华  陈晓枫  王利 《化学学报》2009,67(16):1897-1902
以具有较高活性的酚氧基联烯基醚(POA)和对叔丁基酚氧基联烯基醚(t-BuPOA)为研究对象, 研究了不同引发 剂/配体体系对其原子转移自由基(ATRP)聚合行为的影响. 发现在2-溴代丙酸甲酯/溴化亚铜/4,4’-二庚基联吡啶(2-MBP/CuBr/dHbpy)和对甲苯磺酰氯/溴化亚铜/三-(N,N-二甲基氨基乙基)胺(p-TsCl/CuBr/Me6TREN)两种ATRP反应体系中, POA的聚合都遵循ATRP反应的机理.  相似文献   

11.
过渡金属催化的原子转移自由基聚合(ATRP)是合成结构可控聚合物的重要方法之一,尽管一系列改进ATRP方法可将催化剂的浓度降至ppm级,但不可避免的金属残留仍然是制约ATRP应用的主要瓶颈。近年来,科学家提出并发展了有机催化原子转移自由基聚合(O-ATRP),从根本上规避了金属催化剂的使用与残留。本文对有机催化原子转移自由基聚合的概念、催化体系和聚合机理进行了介绍,同时综述了该新聚合方法在高分子合成与材料制备方面的应用。  相似文献   

12.
甲基丙烯酸缩水甘油酯的常温原子转移自由基活性聚合  相似文献   

13.
Summary: Two multifunctional iniferters, 1,4-bis-(α-N,N-diethyldithiocarbamyl-isobutyryloxy)-benzene (BDCIB) and 1,3,5-tris-(α-N,N-diethyldithiocarbamyl-isobutyryloxy)-benzene (TDCIB), were successfully synthesized and used as initiators to initiate the polymerization of styrene in the presence of a CuBr/PMDETA complex. The polymerization results demonstrated that the kinetic plots in all cases were first-order to the monomer, the molecular weight of the polymers increased linearly with the monomer conversion; meanwhile, the molecular weight distribution of the polymer was kept to a very low value (Mw/Mn ≤ 1.35). Furthermore, the measured molecular weights were very close to the calculated values, which indicated the high efficiency of the initiator for the polymerization of styrene. The effect of catalyst concentration and initiator concentration was not obvious and the influence of polymerization temperature was apparent, and the polymerization rate increased with the polymerization temperature. The results of chain-extension and 1H NMR analysis proved that the polymer obtained was capped with diethylthiocarbamoylthiy (DC) group.  相似文献   

14.
With the recent development of new initiation techniques in atom transfer radical polymerization (ATRP) that allow catalysts to be employed at unprecedented low concentrations (∼10 ppm), a thorough understanding of competitive equilibria that can affect catalyst performance is becoming increasingly important. Such mechanistic considerations are discussed herein, including i) factors affecting the position of the ATRP equilibrium; ii) dissociation of the ATRP catalyst at high dilution and loss of deactivator due to halide dissociation; iii) conditional stability constants as related to competitive monomer, solvent, and reducing agent complexation as well as ligand selection with respect to protonation in acidic media; and iv) competitive equilibria involving electron transfer reactions, including the radical oxidation to carbocations or reduction to carbanions, radical coordination to the metal catalyst, and disproportionation of the CuI-based ATRP activator.  相似文献   

15.
A bifunctional alkyl halide, namely l, 2-bis(2′-bromobutyryl) ethane (BBrBE), was synthesized and used to initiate the bulk atom transfer radical polymerization (ATRP) of styrene (St) at 110°C in the presence of CuBr/2,2′-bipyridyl. The narrow polydispersity of polystyrene (PSt) with precisely two arms could be synthesized. The initiate ability of the two active bromide functional groups at both sides of BBrBE for St and the propagation ability of the two arms were confirmed to be similar by the characterization of the individual arms obtained upon hydrolysis of the ester link between the core and the branches.  相似文献   

16.
Summary: The living polymerization of N,N‐dimethylacrylamide was achieved by atom transfer radical polymerization catalyzed by copper chloride complexed with a new ligand, N,N′‐bis(pyridin‐2‐ylmethyl 3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED). With methyl 2‐chloropropionate as the initiator, the polymerization reached high conversions (> 90%) at 80 °C and 100 °C, producing polymers with very close to theoretical values and low polydispersity. The ligand, temperature, and copper halide strongly affected the activity and control of the polymerization.

PDMA molecular weight and polydispersity dependence on the DMA conversion in the DMA bulk polymerizations at different temperatures: DMA/CuCl/MCP/BPED = 100/1/1/1, 100 °C (♦, ⋄); 80 °C (▴, ▵); 60 °C (▪, □); and DMA/CuCl/MCP/BPED = 100/1/1/2, 80 °C (•, ○).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号