首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of the redox reaction between colloidal MnO2 and glycolic acid have been studied spectrophotometrically by monitoring the decay in the absorbance of colloidal MnO2 in absence and presence of surfactants. Anionic sodium dodecyl sulfate has no effect, non-ionic Triton X-100 catalyzed the reaction and experiments were not possible in presence of cationic cetyltrimethylammonium bromide due to the precipitation of MnO2.The reaction followed the same type of kinetic behavior, i.e., fractional-, first- and fractional-order dependencies, respectively, in [glycolic acid], [MnO2] and [H+ ] in both the media. Effects of gum arabic and manganese(II) have also been studied and discussed. Mechanisms in accordance with the experimental data are proposed for the reaction.  相似文献   

2.
Water-soluble colloidal manganese dioxide has been used to oxidize l-tyrosine in aqueous-acidic medium. The kinetics of the reaction was studied in the absence and presence of non-ionic surfactant (TX-100) using a spectrophotometric technique. As the reaction was fast under pseudo-first-order conditions ([l-tyrosine]  [MnO2]), the rate constants as a function of [l-tyrosine], [MnO2], [HClO4] and temperature were obtained under second-order conditions. The rate of the reaction increased and decreased with the increase in [l-tyrosine] and [MnO2], respectively. Perchloric acid, sodium pyrophosphate and sodium fluoride showed catalytic effect. The effect of externally added manganese(II) sulphate is complex. It is not possible to predict the exact dependence of the rate constants on manganese(II) concentration, which has a series of reactions with other reactants. The reaction is inhibited by the non-ionic surfactant TX-100. Activation parameters have been evaluated using Arrhenius and Eyring equations. Based on observed kinetic results, a probable mechanism for the reaction has been proposed which corresponds to fast adsorption of the reductant and hydrogen ion on the surface of colloidal MnO2 followed by one-step two-electron transfer rate limiting process.  相似文献   

3.
Kinetic data for the oxidation of glutathione (reduced, GSH), cysteine, glycine and glutamic acid by colloidal manganese dioxide, (MnO2) n are reported. Colloidal MnO2, oxidized glutathione to disulphide (glutathione, oxidized), was reduced to manganese (II). Glycine and glutamic acid (structural units of glutathione) are not oxidized by colloidal MnO2, but the other structural unit, cysteine, is also oxidized by the same oxidant under similar experimental conditions. This is interpreted in terms of the rate-determining colloidal MnO2-S bonded intermediate. The reactivity of GSH towards colloidal MnO2 is very much higher than cysteine. Kinetics of oxidation of GSH and cysteine by colloidal MnO2 were performed spectrophotometrically as a function of [GSH], [cysteine], colloidal [(MnO2) n ], [HClO4], temperature and trapping agents sodium fluoride and manganese (II) (reduction product of colloidal MnO2). The purpose of this work was to study the role of –NH2, –COOH, –SH groups present in the carbon chain of the above amino acids. It was found that the reactivity of –SH group is higher than –NH2 and –COOH groups. The mechanisms, involving a colloidal MnO2 complex with GSH and cysteine, are proposed. The complexes decompose in a rate-determining step, leading to the formation of free radical and manganese (III), which is also an intermediate. The dimerization of radicals takes place in a subsequent fast step to yield the products.  相似文献   

4.
The kinetics of the oxidative degradation of dipeptide glycyl–glycine (Gly-Gly) by water-soluble colloidal MnO2 in acidic medium has been studied by employing visible spectrophotometer in the aqueous and micellar media at 35 °C. To obtain the rate constants as functions of [Gly-Gly], [MnO2] and [HClO4], pseudo-first-order conditions were maintained in each kinetic run. The first-order-rate is observed with respect to [MnO2], whereas fractional-order-rates are determined in both [Gly-Gly] and [HClO4]. The addition of sodium pyrophosphate and sodium fluoride has composite effects (catalytic and inhibition). The reaction proceeds through the fast adsorption of Gly-Gly on the surface of the colloidal MnO2. The observed results are discussed in terms of Michaelis–Menten/Langmuir–Hinshelwood model. The Arrhenius and Eyring equations are found valid for the reaction over a range of temperatures and different activation parameters have been evaluated. A probable reaction mechanism, in agreement with the observed kinetic results, has been proposed and discussed. The influence of changes in the surfactant concentrations on the observed rate constant is also investigated and the reaction followed the same type of kinetic behavior in micellar media. The pseudo-first-order rate constant (kψ) is found to increase about two-fold with increase in [TX-100]. The catalytic effect of nonionic surfactant TX-100 is explained in terms of the mathematical model proposed by Tuncay et al.  相似文献   

5.
Kinetics of oxidation of DL-malic acid by water soluble colloidal MnO2 (prepared from potassium permanganate and sodium thiosulfate solutions) have been studied spectrophotometrically in the absence and presence of nonionic Triton X-100 surfactant. The reaction is autocatalytic and manganese(II) (reduction product of the colloidal MnO2) may be the autocatalyst. The order of the reaction is first in colloidal [MnO2] as well as in [malic acid] both in the absence and presence of the surfactant. The reaction has acid-dependent and acid-independent paths and, in the former case, the order is fractional in [H+]. The effect of externally added manganese(II) is complex. The results show that the rate constant increases as the manganese(II) concentration is increased. It is not possible to predict the exact dependence of the rate constants on manganese(II) concentration, which has a series of reactions with other reactants. In the presence of TX-100, the observed effect on k is catalytic up to a certain [TX-100]; thereafter, an inhibitory effect follows. The catalytic effect is explained in terms of the mathematical model proposed by Tuncay et al. (in Colloids Surf A Physicochem Eng Aspects 149:279 3). Activation parameters associated with the observed rate constants (kobs/k) have also been evaluated and discussed.  相似文献   

6.
Nano-sized colloidal manganese dioxide was synthesized at room temperature by a chemical method in neutral medium without a stabilizing agent. The obtained MnO2 nano-sized colloid was found to be stable for several months and was characterized by means of UV–Vis spectroscopy, energy-dispersive X-ray spectrometer (EDX) and transmission electron microscopy. The EDX analysis confirmed the presence of Mn and O in the sample. The paper reports on the use of nano-sized colloidal manganese dioxide as an oxidant in the oxidation of cysteine (Cyst) in the absence and presence of surfactant (TX-100) at 35 °C. The study was carried out as functions of [MnO2], [Cyst], [HClO4] and temperature. The results show that the reaction proceeds through fast adsorption of Cyst onto the surface of the colloidal MnO2. Pseudo-first-order rate constants were found to increase with the increase in [TX-100]. This paper reports values of the reaction rates and activation parameters in the absence and presence of surfactant and proposes a plausible mechanism.  相似文献   

7.
The kinetics of the degradation of metribuzin by water-soluble colloidal MnO2 in acidic medium (HClO4) were studied spectrophotometrically in the absence and presence of surfactants. The experiments were performed under pseudo-first-order reaction conditions in respect of MnO2. The degradation was observed to be of the first order in respect of MnO2 while of fractional order for both metribuzin and HClO4. The rate constant for the degradation of metribuzin was observed to decrease as the concentration of MnO2 increased. The anionic surfactant, sodium dodecyl sulphate (SDS), was observed to be ineffective whereas the non-ionic surfactant, Triton X-100 (TX-100), accelerated the reaction rate. However, the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), caused flocculation with oppositely-charged colloidal MnO2; hence further study was not possible. The catalytic effect of TX-100 was discussed in the light of the available mathematical model. The kinetic data were exploited to generate the various activation parameters for the oxidative degradation of metribuzin by colloidal MnO2 in the absence as well as the presence of the non-ionic surfactant, TX-100.  相似文献   

8.
Aqueous colloidal manganese dioxide (MnO2) was prepared via titration by using potassium permanganate and sodium thiosulphate in aqueous neutral medium. The kinetics of oxidation of d-glucose onto the surface of colloidal MnO2 have been studied spectrophotometrically. The results show that the rate of initial stage (nonautocatalytic path) increases with increasing the [d-glucose], [H+], and temperature and also upon addition of nonionic surfactant Triton X-100 (TX-100), which indicates that the surfactant enhances the concentration of d-glucose at the surface of the colloidal MnO2. Hydrogen bonding interaction seemingly arises between –OH groups of d-glucose and oxygen of the ether linkages of polyoxyethylene chain of TX-100. A possible mechanism of the oxidative degradation of d-glucose is discussed in terms of d-glucose/TX-100 and colloidal MnO2 interaction.  相似文献   

9.
The kinetics of the reduction of water-soluble colloidal manganese dioxide by glycyl-leucine (Gly-Leu) has been investigated in the presence of perchloric acid both in aqueous as well as micellar media at 35 °C. The study was carried out as functions of [MnO2], [Gly-Leu] and [HClO4]. The first-order-rate is observed with respect to [MnO2], whereas fractional-order-rates are determined in both [Gly-Leu] and [HClO4]. Addition of sodium pyrophosphate and sodium fluoride enhanced the rate of the reaction. Further, the use of surfactant micelles is highlighted as, in favourable cases, the micelles help the redox reactions by bringing the reactants into a close proximity due to hydrogen bonding. While the ionic surfactants SDS and CTAB have not shown any effect on the reaction rate, the nonionic surfactant TX-100 has catalytic effect which is explained in terms of the mathematical model proposed by Tuncay et al. (1999). The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ΔH#, ΔS# and ΔG#) have been evaluated. Kinetic studies show that the redox reaction between MnO2 and Gly-Leu proceeds through a mechanism combining one- and two-electron pathways: Mn(IV)  Mn(III)  Mn(II) and Mn(IV)  Mn(II). On the basis of the observed results, a possible mechanism has been proposed and discussed.  相似文献   

10.
Aqueous solution of water soluble colloidal MnO2 was prepared by Perez-Benito method. Kinetics of l-methionine oxidation by colloidal MnO2 in perchloric acid (0.93 × 10−4 to 3.72 × 10−4 mol dm−3) has been studied spectrophotometrically. The reaction follows first-order kinetics with respect to [H+]. The first-order kinetics with respect to l-methionine at low concentration shifts to zero order at higher concentration. The effects of [Mn(II)] and [F] on the reaction rate were also determined. Manganese (II) has sigmoidal effect on the rate reaction and act as auto catalyst. The exact dependence on [Mn(II)] cannot be explained due to its oxidation by colloidal MnO2. Methionine sulfoxide was formed as the oxidation product of l-methionine. Ammonia and carbon dioxide have not been identified as the reaction products. The mechanism with the observed kinetics has been proposed and discussed.  相似文献   

11.
The oxidation of methionine by freshly prepared colloidal manganese dioxide in aqueous as well as micellar media was studied spectrophotometrically at 35°C. The reaction between methionine and MnO2 in both media exhibits 1:1 stoichiometry (methionine:MnO2). The oxidation reaction is first order with regard to the MnO2 concentration, but is fractional-order in the methionine concentration and HClO4 concentrations. A catalytic effect of nonionic surfactant TX-100 on the rate of oxidation was observed and reaction rate was found to be proportional to {k′ + k″ [TX-100]}, where k′ and k″ are the rate constants in absence and presence of surfactant, respectively. The use of surfactant micelles is highlighted as, in favorable cases; the micelles help the redox reactions by bringing the reactants in a close proximity through hydrogen bonding. The oxidation reaction in aqueous and micellar media is shown to proceed via methionine–MnO2 and methionine–MnO2–TX-100 complexes, respectively, which decomposes slowly in a rate determining step to give methionine sulfoxide as the product. A suitable mechanism is proposed for these observations.  相似文献   

12.
Kinetics of the title reaction has been studied spectrophotometrically in presence of perchloric acid at 30°C both in the absence and presence of Triton X-100 (TX-100). The reaction-time curves suggest the involvement of non-autocatalytic and autocatalytic reaction paths. The reaction follows first-order kinetics with respect to colloidal MnO2 and mandelic acid. The reaction has acid-dependent and acid-independent paths and, in the former case, the order is fractional in [H+]. Addition of nonionic surfactant (TX-100) catalysed the reaction which is explained on the basis of hydrogen bonding between the oxygen of polyoxyethylene chains of TX-100 and hydroxy groups of mandelic acid/colloidal MnO2. The kinetic data are rationalized in terms of model proposed by Tuncay et al. On the basis of the observed results, a possible mechanism has been proposed and discussed.  相似文献   

13.
Kinetics of the initial stages of oxidation of tartaric acid (TA) in the absence and presence of manganese(II) ions have been studied spectrophotometrically. The rate of the induction was slow and then gradually increased with increasing [TA] and/or [HClO4]. The reaction followed third-order kinetics; first-order with respect to each of [TA], [HClO4] and [CrVI]. The kinetic and manganese(II) effect studies are consistent with a one-step three-electron mechanism (CrVI CrIII without passing through CrIV as an intermediate) in which a termolecular complex is formed between TA, MnII and HCrO4 . In order to obtain further insight, oxidation of glyoxylic acid (GA), an oxidation product of TA, was also studied under the similar conditions. Details of the process are discussed.  相似文献   

14.
Kinetics of the reaction between d‐glucose and Cr(VI) in the absence and presence of surfactant micelles have been studied by a spectrophotometric method in aqueous‐acidic solutions of perchloric acid. It was observed that the reaction has a nonautocatalytic followed by an autocatalytic pathway. The rate of the initial stage increases with increase in [glucose], [HClO4] and temperature. Due to precipitation, the effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) could not be studied whereas the oxidation is catalyzed by anionic micelles of sodium dodecyl sulfate (SDS) and nonionic micelles of Triton X‐100 (TX‐100). The results are discussed in terms of the pseudo‐phase kinetic model. Activation parameters are evaluated and a mechanism consistent with the results is proposed. A rate law for the reaction has also been derived. The redox reaction occurs through a Cr(VI)→Cr(IV) path.  相似文献   

15.
The formation of palladium(II) complexes with aliphatic amines and their oxidation by chloramine‐T in perchloric acid medium has been studied. The spectrophotometric studies showed the formation of 1:1 and 1:2 complexes between palladium(II) and amine in absence of HClO4. An increase in [HClO4] in reaction mixture suppresses the complex formation and in presence of [HClO4] ~10?3 mol dm?3 only a 1:1 complex between palladium(II) and amine has been observed. The effect of Cl? on the complex formation has also been studied. Palladium(II)‐catalyzed oxidation of these amines by chloramine‐T showed a first‐order dependence of rate with respect to each—oxidant, substrate, catalyst, and H+. The mechanism consistent with kinetic data for the oxidation process has been proposed in absence as well as in presence of initial [Cl?]. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 603–612, 2002  相似文献   

16.
Stabilization and characterisation of water soluble colloidal MnO2 during the oxidation of sulphur-containing organic reductants “thiourea, thioactamide and methionine” by permanganate in aqueous neutral media are reported for the first time. Upon addition of permanganate to a solution of methionine, a transient species appears within the time of mixing, which is stable for several weeks. On the other hand, the transient species is unstable in the presence of thiourea and thioacetamide, respectively. The nature of manganese (IV) species present in the solution was characterized by spectrophotometric and coagulation measurements. On addition of HClO4, there is a decrease in the absorbance of the reaction mixture. Under pseudo first-order conditions ([reductants] > []), the reduction rate was very fast up to the formation of water soluble colloidal MnO2. The effect of various parameters, such as hydrogen ion concentration, amount of and concentration of reductants were investigated. Mechanisms consistent with the observed results have been proposed and discussed.  相似文献   

17.
The kinetics of the oxidation of L-tryptophan by water-soluble colloidal MnO2 (prepared from potassium permanganate and sodium thiosulfate solutions) has been carried out in aqueous perchloric acid medium at different temperatures. Monitoring the disappearance of the MnO2 spectrophotometrically at 390 nm was used to follow the kinetics. The first-order kinetics with respect to [L-tryptophan] at low concentrations shifted to zero-order at higher concentrations. The reaction followed first-order with respect to [MnO2] but fractional-order with respect to [HClO4]. Adding trapping agents enhanced the rate of the reaction. The Arrhenius and Eyring equations were found valid for the reaction between 35°C and 55°C and different activation parameters (Ea, ΔH#, ΔS#) have been evaluated. On the basis of various observations and product characterization a plausible mechanism has been envisaged for the reaction taking place at the colloid surface. The results suggest formation of an adsorption complex between L-tryptophan and MnO2. The complex decomposes in a rate-determining step, leading to the formation of free radical, which again reacts with the colloidal MnO2 in a subsequent fast step to yield products. Freundlich isotherm is used to explain the adsorption of L-tryptophan on the colloidal MnO2.  相似文献   

18.
Summary The kinetics of oxidation of malonic acid by both [MnO4] and MnO2 have been studied in an HClO4 medium. The oxidation product of the organic acid was found to be glyoxylic acid. A reaction mechanism assuming complexation between MnO2 and malonic acid is suggested. The rate is independent of [H+].  相似文献   

19.
The kinetics and mechanism of the oxidation of D-galactose by chromium(VI) in the absence and presence of cerium(IV) and manganese(II) were studied spectrophotometrically in aqueous perchloric acid media. The reaction is first order in both [D-galactose] and [H+]. The cerium(IV) inhibits the oxidation path, whereas manganese(II) catalyzes the reactions. The observed inhibitory role of cerium(IV) suggests the formation of chromium(IV) as an intermediate. In the manganese(II) catalyzed path, the D-galactose-manganese(II) complex was considered to be an active oxidant. In this path, the complex forms a ternary chromate ester with chromium(IV) which subsequently undergoes acid catalyzed redox decomposition (one-step three-electron transfer: Indian J. Chem., 2004, vol. 42A, p. 1060; Colloids and Surfaces, 2001, vol. 193, p. 1) in the rate determining step. On the basis of kinetic data, the mechanism of D-galactose oxidation is proposed for parent, the manganese(II) catalyzed and cerium(IV) — inhibited reactions. The activation parameters E a = 59 kJ ΔH # = 57 kJ mol−1, and ΔS # = −119 J K−1 mol−1 are calculated and discussed. Reaction products are also examined. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 1, pp. 90–95. This article was submitted by the authors in English.  相似文献   

20.
Kinetic data for the colloidal MnO2–thiourea redox system are reported for the first time. The reduction of water-soluble colloidal MnO2 by thiourea (sulfur containing reductant) in aqueous perchloric acid medium has shown that it proceeds in two stages, i.e., a fast stage followed by a relatively slow second stage. The log (absorbance) versus time plot deviates from linearity. The kinetics of both the stages was investigated spectrophotometrically. The first-order kinetics with respect to [thiourea] at low concentration shifts to zero-order at higher concentration. The reaction rate increases with [HClO4] and the kinetics reveals complex order dependence in [HClO4]. Addition of P2O 7 4− and F in the form of Na4P2O7 and NaF, respectively, has inhibitory effect on the reaction rate. The reaction proceeds through the fast adsorption of thiourea on the surface of the colloidal MnO2. A mechanism involving the protonated thiourea as the reactive reductant species is proposed. The observed results are discussed in terms of Michaelis–Menten/Langmuir–Hinshelwood model. From the observed kinetic data, colloidal MnO2–thiourea adsorption constant (K ad1) and rate constant (k 1) were calculated to be 1.25×1010 mol−1 dm3 and 3.1×10−4 s−1, respectively. The variation of temperature does not have any effect on the reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号