首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have observed electrical bistability and large conductance switching in functionalized carbon nanotube (CNT)-conjugated polymer composites at room temperature. The concentration of the CNTs in the polymer matrix controlled the degree of bistability. Conduction mechanism applicable in each of the conducting states has been identified. The switching had an associated memory phenomenon and was reversible in nature. In the bistable devices, the active layer retained its high-conducting state until a reverse voltage erased it. We could "write" or "erase" a state and "read" it for many cycles for random-access memory applications.  相似文献   

2.
We report a theoretical study for the conformational switching of molecules on Au(111) surface in the presence of an applied electric field. Ab initio calculations for N-(2-mercaptoethyl)benzamide indicate that this molecule, when adsorbed, can exist as two stable conformers of nearly equal energies, but the dipoles point in reverse directions with respect to the surface. An electric field can be used to "switch" one conformer to the other, and during this process, there is an abrupt change in the height of the molecule from the surface. This change is expected to cause a conductance switching in the system. Further calculations for N-(2-mercaptoethyl)-4-phenylazobenzamide suggest that the experimentally observed phase switching of this molecule is associated with a conformational change accompanied by dipole reversal.  相似文献   

3.
Electric field induced switching behaviors of a series of low-density omega-carboxyalkyl modified H-Si(111) and the mixed omega-carboxyalkyl/alkyl covered H-Si(111) have been simulated by using molecular dynamics (MD) simulation techniques. The external electric fields may drive surface-confined molecules to reversibly change conformations between the all-trans (switching "on") and the mixed trans-gauche (switching "off") states. Such surfaces switch wettabilities between the hydrophilic state and the moderately hydrophobic state. It has been found in broad ranges of intensities of applied electric fields, -2.0 x 10(9) V/m < or = E(down) < or = 0 and 1.8 x 10(9) V/m < or = E(up) < or = 7.3 x 10(9) V/m, both the low-density (11.1%-33.3%) omega-carboxyalkyl and the mixed omega-carboxyalkyl/alkyl (in mole fraction of 0.4 < or = N(carboxyalkyl) : N(alkyl) < or = 3.0) monolayers covering H-Si(111) exhibit conformational switching in the aqueous medium. The critical intensity of the electric field, E(up) = 1.8 x 10(9) V/m, which is required to trigger the switches is observed by our MD simulations and further rationalized by a thermodynamical model. Some important factors in the control of switching performances, such as the steric hindrances, the formation of the electric double layer at the monolayer/electrolyte solution interface, the hydration effects of carboxylate anions, the components of surrounding electrolyte solutions, as well as the rigidity of surface-confined chains are elucidated. The lower ionic strength and additions of acetonitrile molecules in the surrounding aqueous solution can reduce the value of critical intensity of the electric field and hence facilitate the realization of switching. Some practical considerations in construction and optimum design of switching surfaces are also suggested.  相似文献   

4.
The fluorescence (FL)"off-on" switching of designed DNA duplex stabilized silver nanoclusters can be accomplished through the control of DNA strand exchange reaction. The successful sequential control of the FL emission of silver nanoclusters in "off-on" switching cycles confirms that the DNA duplex stabilized silver nanoclusters can work as a new kind of DNA FL switch.  相似文献   

5.
The controllable switching of suitably bridged resorcin[4]arene cavitands between a "vase" conformation, with a cavity capable of guest inclusion, and a "kite" conformation, featuring an extended flattened surface, provides the basis for ongoing developments of dynamic molecular receptors, sensors, and molecular machines. This paper describes the synthesis, X-ray crystallographic characterization, and NMR analysis of the "vase-kite" switching behavior of a fully pyrazine-bridged cavitand and five other mixed-bridged quinoxaline-bridged cavitands with one methylene, phosphonate, or phosphate bridge. The pyrazine-bridged resorcin[4]arene cavitand displayed an unexpectedly high preference for the kite conformation in nonpolar solvents, relative to the quinoxaline-bridged analogue. This observation led to extensive solvent-dependent switching studies that provide a detailed picture of how solvent affects the thermal vase-kite equilibration. As for any thermodynamic process in the liquid phase, the conformational equilibrium is affected by how the solvent stabilizes the two individual states. Suitably sized solvents (benzene and derivatives) solvate the cavity of the vase form and reduce the propensity for the vase-to-kite transition. Correspondingly, the kite geometry becomes preferred in bulky solvents such as mesitylene, incapable of penetrating the vase cavity. As proposed earlier by Cram, the kite form is preferred at low temperatures due to the more favorable enthalpy of solvation of the enlarged surface. Furthermore, the kite conformation is more preferred in solvents with substantial hydrogen-bonding acidity: weak hydrogen-bonding interactions between the mildly basic quinoxaline and pyrazine nitrogen atoms and solvent molecules are more efficient in the open kite than in the closed vase form. Vase-to-kite conversion is entirely absent in dipolar aprotic solvents lacking any H-bonding acidity. Thermal vase-kite switching requires fully quinoxaline- or pyrazine-bridged cavitands, whereas pH-controlled switching is also applicable to systems incorporating only two or three such bridges.  相似文献   

6.
Three new covalently linked molecular capsules were synthesized from their resorcinarene cavitand precursors in good yields. The capsules undergo reversible conformational switching between the closed "vase" form and the open "kite" form upon temperature or pH variation. The kite conformation obtained via either method in CDCl(3) switches to vase conformation upon addition of polar solvents such as acetone-d(6) or THF-d(8).  相似文献   

7.
The switching of DNA monolayers between a "lying" and a "standing" state initiated by applying electric field, and the subsequent DNA hybridization at different states were investigated in a contactless, label-free mode by surface plasmon resonance (SPR) technique. The results showed that the strength of the electric field and surface coverage could influence the switching of DNA monolayers. In addition, it was found that DNA hybridization efficiency could be enhanced or decreased when DNA probes stood straight up or lay flat on the gold surface, depending on the potential of the gold substrate. The enhancement of DNA hybridization efficiency reached the maximum when surface coverage reached 5.87 x 10(12) molecules/cm(2) and the potential of gold substrate was more negative than -0.7 V (versus ITO-coated glass). The research may be helpful for the construction of sensitive biosensors, biochips, and nanoscale electronic devices.  相似文献   

8.
Tricky triggering: Supramolecular peptide amphiphiles were prepared by host-guest complexation of pyrene-labeled peptides and viologen lipid with cucurbit[8]uril. They self-assemble into vesicles, which are responsive to a variety of external triggers. Both "switching on" and "switching off" of fluoresence and cytotoxicity is demonstrated in?vitro.  相似文献   

9.
Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior. However, only a few of them are investigated in surface studies due to their poor thermal stability. The adsorption and conformational switching of two verdazyl radical molecules, namely, 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-2-yl)-6-oxoverdazyl (B2P) and 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy (STM) and density functional theory (DFT). The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2P in STM images are observed and assigned to be its "P" and "T" conformations. The "P" conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the "T" ones appear with a large protrusion and two small ones of different size. Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations. Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond. STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V. The "T" conformation of B2P can be switched to the "P" while the "P" conformation of B4P can be switched to the "T" one. For both molecules, such a conformational switching is irreversible. The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images. STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated. For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images. Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface. The tilt angles in "P" and "T" conformations are 0° and 50°, respectively. In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified. This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches.  相似文献   

10.
Summary Eluate transfer between coupled columns by flow switching, backflushing of the pre-column, and other procedures of multidimensional chromatography (MDC) are invaluable techniques to save analysis time to improve resolution, to gain more and better chromatographic information and to prevent contamination of main (high resolution) column and detectors such as ECD and TID. It is of advantage to maintain the coupled columns at different temperatures. Double oven instruments should therefore be used with advantage in multidimensional gas chromatography (MDGC). Flow switching can be done in between and after the system of coupled columns. Also, reactors can be coupled to high resolution columns with advantage [5].Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

11.
We demonstrate that the electrical "switching" behavior of single molecules connected between two electrode contacts can be controlled by altering their structure and electrochemical characteristics. The electrical properties of gold|molecule|gold single molecule junctions incorporating HS(CH2)6-X-(CH2)6SH, where X = viologen (4,4'-bipyridinium) or pyrrolotetrathiafulvalene, are determined using a scanning tunneling microscopy based technique. The switching behavior, controlled through a tuneable electrochemical gate, changes from an on-off response (viologen) to an off-on-off response (pyrrolotetrathiafulvalene) on changing the central redox group. In contrast, the electrical properties of junctions incorporating redox-inactive HS(CH2)6-1,4-C6H4-(CH2)6SH do not alter significantly as a function of applied potential.  相似文献   

12.
Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is biased negative, an apparent breakdown occurs, leading to a high conductance state which is stable for at least several hours. Upon scanning to positive bias, the conductance returns to a low state, and the cycle may be repeated hundreds of times. Similar effects are observed when Cu is substituted for Au and for three different molecular layers as well as "control" junctions of the type carbon/TiO2/Ag/Au. The polarity of the "switching" is reversed when the Ag layer is between the carbon and molecular layers, and the conductance change is suppressed at low temperature. Pulse experiments show very erratic transitions between high and low conductivity states, particularly near the switching threshold. The results are consistent with a switching mechanism based on Ag or Cu oxidation, transport of their ions through the TiO2, and reduction at the carbon to form a metal filament.  相似文献   

13.
Cyclic voltammetric studies of poly(vinylferrocene), PVF, in aqueous sodium perchlorate, sodium p-toluenesulfonate, and sodium naphthalenesulfonate solutions revealed unexpected history effects. The films contain redox sites in two local environments. One type of ferrocene site is in a compact, unsolvated environment; it undergoes redox switching in NaClO4 with only the transfer of counter ions. The other type of ferrocene site is in a more diffuse environment; it undergoes redox switching with the transfer of perchlorate counter ion and water. Only the latter sites can accommodate large anions (toluenesulfonate or naphthalenesulfonate), and therefore undergo redox switching in such media. Upon multiple redox cycling, these large anions get progressively locked into the structure, thereby blocking the diffuse sites. Upon transfer back to NaClO4 solution, only the compact sites are able to undergo redox switching.Contribution to the 3rd Baltic Conference on Electrochemistry, Gdask-Sobieszewo, 23–26 April 2003.Dedicated to the memory of Harry B. Mark, Jr. (February 28th, 1934 – March 3rd, 2003).  相似文献   

14.
Polymer surface layers comprised of mixed chains grafted to a functionalized silicon surface with a total layer thickness of only 1-3 nm are shown to exhibit reversible switching of their structure. Carboxylic acid-terminated polystyrene (PS) and poly (butyl acrylate) (PBA) were chemically attached to a silicon surface that was modified with an epoxysilane self-assembled monolayer by a "grafting to" routine. While one-step grafting resulted in large, submicron microstructures, a refined, two-step sequential grafting procedure allowed for extremely small spatial dimensions of PS and PBA domains. By adjusting the grafting parameters, such as concentration of each phase and molecular weight, very finely structured surfaces resulted with roughly 10-nm phase domains and less than 0.5-nm roughness. Combining the glassy PS and the rubbery PBA, we implemented a design approach to fabricate a mixed brush from two immiscible polymers so that switching of the surface nanomechanical properties is possible. Post-grafting hydrolysis converted PBA to poly(acrylic acid) to amplify this switching in surface wettability. Preliminary tribological studies showed a difference in wear behavior of glassy and rubbery surface layers. Such switchable coatings have practical applications as surface modifications of complex nanoscale electronic devices and sensors, which is why we restricted total thickness for potential nanoscale gaps.  相似文献   

15.
We report on the formation of responsive surfaces with tailorable surface reconstruction kinetics and switching hysteresis by thiolene radical addition of mercaptoalkanols with variable lengths to poly(vinylmethylsiloxane) networks. Exposing these elastomer surfaces to water results in rearrangement of the hydrophilic alkanes at the surface. The rearrangement kinetics decreases with increasing number of the methylene spacers (n) in the mercaptoalkanol. The response kinetics is found to be very fast for n = 2 and 6. For instance, upon exposing to water, the water contact angle on 3-mercaptopropanol-based surfaces decreases by approximately 35 degrees at the rate of 2 degrees /s. The high flexibility of the siloxane backbone endows these materials with switching longevity; the materials were able to switch their wettability over 10 cycles with minimum hysteresis. Increasing the number of methylene spacers to n = 11 decreases the surface reorganization dramatically. Formation of semicrystalline regions in such materials (detected via IR) is responsible for initial "sluggish" kinetics and eventual surface "freezing".  相似文献   

16.
Photochromic reactions of diarylethene derivatives were detected at a single-molecule level by using a fluorescence technique. Fluorescent photoswitching molecules in which photochromic diarylethene and fluorescent bis(phenylethynyl)anthracene units are linked through an adamantyl spacer were synthesized, and switching of fluorescence upon irradiation with UV and visible light was followed in solution as well as on polymer films at the single-molecule level. Although in solution the fluorescence intensity gradually changed upon irradiation with UV and visible light, digital on/off switching between two discrete states was observed at the single-molecule level. The "on"- and "off"-times were dependent on the power of UV and visible light. When the power of UV and visible light was increased, the average on- and off-times became short in proportion to the reciprocal power of the light. The response-times were found to show distribution. The distribution of the on- and off-times is considered to reflect the difference in the micro-environment as well as conformation of the molecules.  相似文献   

17.
The activated beta-lactam aldehydes 37, 41 and 57 were synthesised. Aldehydes 37 and 57 proved to be more versatile substrates for our "ring switching" strategy to homochiral glutamate antagonists than the corresponding compounds in the pyroglutamate or 6-oxopipecolinate series had been. Substantial libraries of homochiral heteroaromatic glycine derivatives with potential for activity at specific glutamate receptor sub-types were prepared from these aldehydes. The aldehyde 41, containing an additional anion stabilising group, underwent a retro-aldol process under "ring switching" conditions.  相似文献   

18.
Magnetic switching of redox reactions and bioelectrocatalytic transformations is accomplished in the presence of relay-functionalized magnetite particles (Fe(3)O(4)). The electrochemistry of a naphthoquinone (1), pyrroloquinoline quinone (2; PQQ), microperoxidase-11 (3), a ferrocene derivative (4) and a bipyridinium derivative (5), functionalized magnetic particles, is switched "ON" and "OFF" by an external magnet upon the attraction of the magnetic particles to an electrode or their retraction from the electrode, respectively. The magneto-switchable activation and deactivation of the electrochemical oxidation of the ferrocene-functionalized magnetic particles and the electrochemical reduction of the bipyridinium-functionalized magnetic particles are used for the triggering of mediated bioelectrocatalytic oxidation of glucose, in the presence of glucose oxidase (GOx), and bioelectrocatalytic reduction of nitrate (NO(3) (-)), in the presence of nitrate reductase (NR), respectively. Magnetic particles functionalized with a PQQ-NAD(+) dyad are used for the magnetic switching of the bioelectrocatalytic oxidation of lactate in the presence of lactate dehydrogenase (LDH). The coupling of these particles with a ferrocene-monolayer-functionalized electrode allows the dual and selective sensing of lactate and glucose in the presence of LDH and GOx, respectively, by using an external magnet to switch the detection mode.  相似文献   

19.
"Nuclearity switching" from a {Co13} supercluster to a {Co12} species via the addition of CO(3)2- anions is reported and can be traced in solution using electrospray MS techniques. In addition, cryospray MS can be used to identify the entire cluster in solution despite the relative lability of its constituents.  相似文献   

20.
The self-consistent decay-of-mixing (SCDM) semiclassical trajectory method for electronically nonadiabatic dynamics is improved by modifying the switching probability that determines the instantaneous electronic state toward which the system decoheres. This method is called coherent switching with decay of mixing (CSDM), and it differs from the previously presented SCDM method in that the electronic amplitudes controlling the switching of the decoherent state are treated fully coherently in the electronic equations of motion for each complete passage through a strong interaction region. It is tested against accurate quantum mechanical calculations for 12 atom-diatom scattering test cases. Also tested are the SCDM method and the trajectory surface hopping method of Parlant and Gislason that requires coherent passages through each strong interaction region, and which we call the "exact complete passage" trajectory surface hopping (ECP-TSH) method. The results are compared with previously presented results for the fewest switches with time uncertainty and Tully's fewest switches (TFS) surface hopping methods and the semiclassical Ehrenfest method. We find that the CSDM method is the most accurate of the semiclassical trajectory methods tested. Including coherent passages improves the accuracy of the SCDM method (i.e., the CSDM method is more accurate than the SCDM method) but not of the trajectory surface hopping method (i.e., the ECP-TSH method is not more accurate on average than the TFS method).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号