首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. M. Walsh 《Laser Physics》2010,20(3):622-634
Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 μm and Er at 2.9 μm) as well as Nd:YAG (1.06 and 1.3 μm) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.  相似文献   

2.
1623 nm Er:YAP and 1648 nm Er:YAG lasers resonantly pumped by a solid state Er:glass laser operating at 1535 nm were investigated. Laser generation was reached for Er:YAP and two Er:YAG crystals with different Er ion concentration. The maximal output energies were 20 and 45 mJ for Er:YAP and Er:YAG laser systems, respectively.  相似文献   

3.
The study describes efficient, acousto-optic Q-switching of Er:YAG laser at the 1645 nm eye-safe wavelength. For longitudinal pumping at wavelength 1532 nm, linear-polarized 10 W Erbium fiber laser radiation was used. The investigated Er:YAG crystals were 25 and 40 mm long and their Erbium concentration was 0.20 and 0.25%, respectively. For giant pulse generation, a fused silica acousto-optic modulator was inserted inside the Er:YAG laser oscillator. For a maximum incident pump power of 7.95 W, pulse energy up to 4.1 mJ was generated with pulse duration 34 ns at 500-Hz repetition rate; the corresponding peak power was 119 kW.  相似文献   

4.
Fluorocarbon-polymer (FCP) coated silver hollow stainless steel (St) devices and waveguides have been developed for Er:YAG laser radiation. Full liquid phase techniques have been adopted to coat the silver and FCP layers inside the stainless steel hollow structure. Both straight and bent robust hollow devices have been fabricated as the output optical elements for the delivery system of medical Er:YAG lasers. A robust hollow waveguide with the length of about 1.6 m has also been realized as an actual delivery system.  相似文献   

5.
M Wang  L Zhu  W Chen  D Fan 《Optics letters》2012,37(17):3732-3734
We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617?nm, resonantly pumped using 1532?nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3?W at 1617?nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7?W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8?mJ at 100?Hz pulse repetition frequency and 81?ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617?nm.  相似文献   

6.
The Nd:YAG (1.444 m) and Cr:Tm:Ho:YAG (2.1 m) free-running laser systems of the output energy of 300 mJ per pulse and repetition rate 1 Hz have been developed and used for bile duct stones fragmentation study in vitro. A total of 67 human bile duct stones of known sizes, collected from surgical sources were used in the experiments. Insensitivity of the stones fragmentation to the type of the laser used, and insensitivity of the fragmentation efficiency to the type of stone, was observed. No pathological changes of the tissue were observed for non-human soft tissue laser irradiation (in vitro) by 1, 2, and 5 pulses of the Cr:Th:Ho:YAG radiation of the fluency of 1.6 J/cm2. The lasers are found to be good candidates for laser lithotripsy.  相似文献   

7.
Remlová  E.  Vránová  J.  Rosina  J.  Navrátil  L. 《Laser Physics》2011,21(9):1665-1669
The main goal of our study was the evaluation of treatment efficiency of two types of ablative laser-CO2 and Er:YAG (or ERB) treatment. 183 patients (Er:YAG—105 patients, CO2—78 patients) were analyzed to compare the curative effects and adverse events, such as loss of pigment and appearance of scars caused by these two lasers. The results of the study showed the slightly better effectiveness of Er:YAG laser radiation in comparison with CO2 laser in the case of treatment of small hemangiomas up to 3 mm in diameter. In the Er:YAG laser application the curative effect was in 99%, hypo-pigmentation occurred in 18%, and scars in 70% of all treatments. In the CO2 laser application the curative effect was in 97%, hypo-pigmentation in 52%, and scars in 77% from all treatments.  相似文献   

8.
We describe the measurement of the Verdet constant of undoped and Er-doped crystalline YAG and tellurite glass at 1645 nm. The undoped YAG value is compared to those measured using visible light. We show that the paramagnetic nature of Er reduces the Verdet constant but that the decrease is probably not significant for the typical Er doping levels used in Er:YAG or in Er:tellurite-glass mid-IR lasers.  相似文献   

9.
Zhang C  Shen DY  Wang Y  Qian LJ  Zhang J  Qin XP  Tang DY  Yang XF  Zhao T 《Optics letters》2011,36(24):4767-4769
We report on the efficient operation of a high-power erbium-doped polycrystalline Er:YAG ceramic laser at 1617 nm resonantly pumped by a high-power 1532 nm Er,Yb fiber laser. Lasing characteristics of Er:YAG ceramics with different Er3+ concentrations are evaluated and compared. With an output coupler of 15% transmission and 0.5 at. % Er3+-doped YAG ceramic as the gain media, the laser generates 14 W of output power at 1617 nm for 28.8 W of incident pump power at 1532 nm, corresponding to a slope efficiency with respect to incident pump power of 51.7%.  相似文献   

10.
In vitro perforation of gelatin-based biomodels and myocardium tissue by powerful CO2 and YAG:Er laser pulses is considered. Features of the thermal and shock-wave effects on the walls of the laser channel are investigated. Patterns of laser channeling in gelatin by a single YAG:Er laser pulse were studied.  相似文献   

11.
The Short term frequency stability characteristics of 2 μm single frequency Solid-state lasers was investigated. The two laser systems of 2 μm single longitudinal mode oscillation Tm, Ho:YLF microchip laser and Ho:YAG NPRO laser were designed and constructed. The Short term frequency stability of these two laser were measured with the fiber delay self-beating heterodyne method. The 3dB width of the relative frequency fluctuation of Tm, Ho:YLF microchip laser and Ho:YAG NPRO laser were measured to be 895 and 736 Hz with 500 m fiber optical (2.5 μs delay). The proportional relation between the lasing fluctuation and the delay time were 358 and 263 Hz/μs, respectively. The vibration experiment was presented and it indicated that the NPRO Ho:YAG was more terrible to the influence of vibration, which is important in the practical application of wind measurement lidar.  相似文献   

12.
Transmission measurements of Q-switched and free-running Er:YAG laser radiation, at 2.94 μm and free-running Ho:YAG laser radiation, at 2.06 μm, through hollow silica waveguides of 750 and 1000 μm core diameter were performed. Attenuation measurements were obtained as a function of the laser energy input and as a function of the bending curvature. The output beam quality was also studied as a function of the focal length of the coupling lens and the overall launching conditions for straight waveguides using the appropriate beam profiler.  相似文献   

13.
Schellhorn M  Hirth A  Kieleck C 《Optics letters》2003,28(20):1933-1935
We report a compact Ho:YAG laser that is intracavity pumped by a diode-pumped Tm:YLF laser. Both lasers exhibit pulse mode behavior. Operating both crystals at room temperature (25 degrees C), we obtained 1.6 W of average output at 2.09 microm from the Ho:YAG laser for 15.4 W of diode power incident upon the Tm:YLF rod and a slope efficiency of 21%.  相似文献   

14.
Two different kinds of chalcogenide glass IR fibers were evaluated relative to transmission of pulsed IR radiation produced by several laser sources in the wavelength range from 1 to 10 μm. Fibers composed either from As-Se-Te or from As2S3 glass, of 250, 500, 750 and 1000 μm and 250, 750 and 1000 μm core diameters were studied, respectively. Attenuation measurements were obtained as a function of the laser energy input and as a function of curvature, wherever this was possible. The output beam quality was also studied using a beam profiler. The lasers used were a Q-switched Nd:YAG laser, emitting at 1.06 μm, a free-running or Q-switched Er:YAG laser emitting at 2.94 μm and a tunable pulsed CO2 laser emitting in the range of 9.3-10.6 μm. The fibers exhibited better behavior when tested with the Er:YAG laser and they were found fragile in pulsed radiation from the Nd:YAG and the CO2 laser. The output beam profiles generally showed a central multi-spiking energy distribution.  相似文献   

15.
Gao C  Zhu L  Wang R  Gao M  Zheng Y  Wang L 《Optics letters》2012,37(11):1859-1861
A monolithic 1645 nm Er:YAG nonplanar ring oscillator (NPRO) resonantly pumped by a 1532 nm fiber laser is demonstrated. For reducing the energy-transfer upconversion effect, a 0.5% doped Er:YAG nonplanar crystal was used. An up to 6.1 W single frequency laser output at 1645 nm was obtained, with a slope efficiency of 55.2% and an optical efficiency of 48.0%. The linewidth of the Er:YAG NPRO was 14.4 kHz.  相似文献   

16.
Chen H  Shen D  Zhang J  Yang H  Tang D  Zhao T  Yang X 《Optics letters》2011,36(9):1575-1577
We report on the high-power and high-efficiency operation of a polycrystalline Ho:YAG ceramic laser in-band pumped by a Tm fiber laser at ~1907 nm. Lasing characteristics of a 1.5 at.% and a 2.0 at.% Ho3?-doped YAG ceramic were investigated and compared. Using an output coupler of 6% transmission, over 21.4 W of cw output power at 2097 nm has been generated with the 1.5 at.% doped Ho:YAG ceramic under 35 W of incident pump power, corresponding to an average slope efficiency with respect to the incident pump power of 63.6% and an optical-to-optical conversion efficiency of 61.1%.  相似文献   

17.
Tian Y  Xu R  Hu L  Zhang J 《Optics letters》2011,36(16):3218-3220
This Letter reports intense emission at 2.7 μm and broadband emission at 2.0 μm from Er(3+)/Tm(3+)/Ho(3+)-doped fluorophosphate glass. The fluorescence characteristics and energy transfer upon excitation of a conventional 980 nm laser diode are investigated. Based on the fluorescence spectra and lifetime measurement, the effect of Tm(3+) and Ho(3+) ions on intense 2.7 μm emission in fluorophosphate glass is demonstrated. It is also found that the effective bandwidth of 2.0 μm emission due to Tm(3+) and Ho(3+) ions can reach as high as 196 nm. These results indicate that the advantageous spectroscopic characteristics of Er(3+)/Tm(3+)/Ho(3+) triply doped fluorophosphate glass together with the outstanding thermal properties may become an attractive host for the mid-IR solid state lasers.  相似文献   

18.
用棒管法拉制了Tm3+/Ho3+掺杂的碲酸盐微结构光纤,并获得了2 μm的激光输出。以1 560 nm的Er3+掺杂石英光纤激光器作为泵浦源,在22 cm长的微结构光纤中,得到了最大功率为8.34 mW、波长为2 065 nm的连续激光输出,泵浦光功率为507 mW,斜率效率为2.97%。研究结果表明,Tm3+/Ho3+共掺碲酸盐微结构光纤是一种用于研制2 μm激光器的理想材料。  相似文献   

19.
In this paper, we presented experimental results concerning on the laser characteristics of two microchip lasers emitting in the 2 μm range, Tm:Ho:YVO4 microchip laser and Tm:Ho:GdVO4 microchip laser. At a heat sink temperature of 283 K, the maximum output power of Tm:Ho:YVO4 laser and Tm:Ho:GdVO4 laser is 47 and 34 mW under absorbed pump power of 912 mW, respectively. High efficiency can be achieved for both lasers at room temperature. Nevertheless, compared with Tm:Ho:GdVO4 laser, Tm:Ho:YVO4 laser can operate on single frequency with high power easily. At the heat sink temperature of 288 K, as much as 16.5 mW of 2052.3 nm single-longitudinal-mode (SLM) laser was achieved for Tm:Ho:YVO4 laser. Under the same condition, only 8 mW of 2048.5 nm SLM laser was achieved for Tm:Ho:GdVO4 laser.  相似文献   

20.
Conventional laser machining of aluminium with long wavelength lasers has its inherent problems due to the high reflectivity of aluminium to laser radiation (Handbook of Optics, vol 1, 2nd ed. New York: McGraw-Hill; 1995). Laser processing at shorter wavelengths reduces the reflectivity of the workpiece to the incident laser radiation and can also reduce the dimensions of the obtainable machining geometries. This paper reviews the limiting factors in the micro machining of aluminium using a diode pumped solid state (DPSS) Nd:YAG laser operated at 1064, 532, and 355 nm. The geometries of the laser-machined samples were investigated using interferometric, and optical methods to assess how the processing fluence and wavelength will affect the obtainable precision for successful integration of the laser in a micromachining CAD/CAM system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号