首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究了烯丙基葡聚糖和N、N'-亚甲基双丙烯酰胺经反相悬浮聚合包埋固定化脂肪酶的方法。考察了悬浮介质、交联度对固定化酶的影响,得出了包埋固定化脂肪酶的最佳条件;并测定了固定化脂肪酶的催化性能,确定了该固定化酶催化橄榄油水解的最适条件。  相似文献   

2.
Rhizopus oryzae lipase (ROL) was immobilized by adsorption onto oxidized cellulose fibers and regenerated films. The maximum adsorption level increases with the raise in the amount of carboxylic groups on cellulose surface confirming that adsorption is being governed mainly by electrostatic interaction between the enzyme and the substrate. This hypothesis was further confirmed by zeta-potential measurements showing a decrease in the zeta-potential of the fibers after enzyme adsorption. XPS analysis showed an intensification of the N 1s peak attesting the presence of the enzyme on the surface. The effect of temperature, pH and solvent polarity on the immobilized enzyme activity and stability was investigated. The catalytic esterification of oleic acid with n-butanol has been carried on using hexane as an organic solvent. A high conversion yield was obtained (about 80%) at 37 degrees C with a molar ratio of oleic acid to butanol 1:1 and 150IU immobilized lipase. The adsorption achieved two successive cycles with the same efficiency, and started to lose its activity during the third cycle.  相似文献   

3.
The glass bead is a new biochip support material for immobilization biomolecules, due to its independence and convenient rearrangement. In order to optimize the immobilization efficiency of oligonucleotides onto glass beads and obtain the highest hybridization efficiency, three commonly used coupling strategies have been studied for covalently attaching oligonucleotides onto large glass beads. Glass beads with 250 μm diameter were amino-silaned with 2% 3-aminopropyltrimethoxysilane (APTMS) and then reacted separately with glutaraldehyde, succinic anhydride and 1,4-phenylene diisothiocyanate (PDITC) to derive CHO beads, COOH beads and isothiocyanate-modified beads (NCS-Beads) accordingly. Afterwards, amino-terminal oligonucleotides were covalently attached onto the surface of beads achieved by three strategies mentioned above. The immobilization efficiency were studied to compare the three strategies, which turned out 2.55 × 1013 probes/cm2 for CHO-Beads, 3.21 × 1013 probes/cm2 for COOH beads and 6.68 × 1013 probes/cm2 for NCS beads. It meant that the immobilization efficiency based on NCS beads was most acceptable. And the method, developed by attaching amino-terminal oligonucleotides onto these cyanate active beads, could be regarded as an efficient one for immobilizing oligonucleotides onto a solid surface. Moreover, in this paper, the hybridization properties of NCS bead-based oligonucleotides have been studied by employing Cy5-tagged complementary oligonucleotides. It was found that the high probe density NCS beads led to low hybridization efficiency possibly due to the existence of steric crowding. In addition, the equilibrium binding constant K A was determined by employing Langmuir isotherm model, which was 7.0 × 106 M−1 for NCS beads with the density of 6.7 × 1013 probes/cm2. Furthermore, it only took 60 min to reach hybridization equilibrium. These large microspheres (>100 μm) can be employed in the mesofluidic systems for automated heterogeneous assays.  相似文献   

4.
The regioselective monohydrolysis of different peracetylated-β-glucopyranosides in aqueous media using immobilized preparations of three different lipases—those from Aspergillus niger (ANL), Candida rugose (CRL) and Candida antarctica B (CAL-B)—has been studied. Three very different immobilization strategies—covalent attachment, anionic exchange and interfacial activation on a hydrophobic support—were employed for each lipase. The role of the immobilization strategy and the effect of the presence of different moieties in the anomeric position of the substrate on the hydrolytic activities, specificities and regioselectivities of the lipases were investigated. For example, the PEI-ANL preparation exhibited 800 times higher activity than the octyl-ANL in the hydrolysis of 2-acetamido-2-deoxy-1-(4-nitrophenyl)-3,4,6-tri-O-acetyl-β-d-glucopyranoside—producing 4-OH derivative in 18% yield—whereas the octyl-ANL was five times more active than the PEI-ANL in the hydrolysis of 1-(4-nitrophenyl)-2,3,4-tri-O-acetyl-β-d-xylopyranoside, producing 4-OH monohydroxy product in >99% yield.The octyl-CRL preparation hydrolyzed regioselectively 3,4,6-tri-O-acetyl-glucal in position 6 in 68% yield while the PEI-CRL produced the 3-OH product in 11% yield, although with moderate specificity. The CNBr-CAL-B hydrolyzed specifically and regioselectively the glucal producing the 3-OH product in >99% yield.  相似文献   

5.
A hydrogel stable in an organic solvent has been developed. This pseudo-solid aqueous gel (PAG) consists of only native gelatin and water, and has been used for immobilization of enzymes. A relatively high amount of gelatin is required in order to obtain stable gels. PAGs containing the enzyme Candida antarctica lipase (SP 525) were successfully used in catalysing the esterification of R/S-(±)-2-octanol and hexanoic acid in hexane. The conversions as well as the enantiomeric excess values of the product, R-(−)-2-octyl hexanoate, were high and comparable to those obtained with microemulsion-based gels. The PAGs containing immobilized lipase gave reproducible results and may be re-used several times. The gels are easy to prepare and use, non-toxic and biocompatible. The PAGs retain their integrity in organic solvents and may be used in preparative-scale synthesis of organic compounds.  相似文献   

6.
The enzymatic reaction is highly respected from an environmentally-friendly point-of-view. Optimization of the reaction media and supporting materials of enzymes must be investigated in parallel with the effort to develop new enzymes. Lipases are frequently used for organic syntheses as synthetic tools even industry because of their acceptance of having a broad range of substrates, stability, and availability. We have investigated the possibility of ILs as both a solvent and activating or stabilization agent of enzymes, in particular, lipase as a model enzyme. ILs allowed recyclable use of a lipase and significant acceleration of transesterification, and also enhanced the stability and reaction activity of a lipase by immobilization through a lyophilization process. We discuss how we enhanced the enzyme capability using the IL engineering focusing on lipase-catalyzed reactions, i. e., realization of the recyclable use of an enzyme, how ILs mediated the enhanced reaction rate, and improved the stability of the enzyme.  相似文献   

7.
Enzymatic hydrolyses of ibuprofen esters produced 99% optically pure S-(+)-ibuprofen. The ee values of two enantiomers of ibuprofen were determined on a HPLC equipped with a chiral column.  相似文献   

8.
Chitin deacetylase is an enzyme that can play an important role in enzymatic deacetylation of chitosan to obtain polymers with a lower degree of acetylation. As this enzyme has never been immobilized up to now, efforts were directed towards determining both the most suitable carrier and the best method of covalent attachment to the selected carrier. In the preliminary experiments several different carriers were tested that were based on acrylic, silica-gel, agarose, dextran or cellulose materials. The best results were obtained for cellulose-based Granocel matrix. DEAE- and NH2-Granocel activated with divinyl sulfone or glutaraldehyde were chosen for optimization of the immobilization procedure and the carrier’s superstructure. It was found that covalent binding of chitin deacetylase on DEAE-Granocel-2000 via divinyl sulfone offers preparations with the highest activity and stability. The characteristics of the selected preparation and comparison with the native enzyme show that optimal conditions are close to those for the free enzyme: the optimal pH is 4.0 for both enzymes and the optimal temperatures are 55 °C and 50 °C for native and immobilized forms, respectively. The kinetics of chitosan deacetylation for both enzymes follow the Michaelis–Menten relationship, but significant differences in the values of the equation parameters were observed.  相似文献   

9.
有机相中固定化脂肪酶催化合成植物甾醇酯   总被引:3,自引:0,他引:3  
蒋振华  于敏  任立伟  周华  韦萍 《催化学报》2013,34(12):2255-2262
酶法合成植物甾醇酯具有反应条件温和、产物纯度和产量高等优点,但非水相酶催化的活性和稳定性普遍较低.本文以大孔树脂固定化脂肪酶为催化剂,并在催化过程中添加乳糖的类似物,构建了有机相高效合成植物甾醇酯的工艺过程.以酯化率为考察指标,对脂肪酶和反应溶剂进行筛选,对酯化条件进行优化,同时考察了糖的种类及添加量对酶催化性能的影响.结果表明,大孔树脂NKA吸附固定化的褶皱假丝酵母(Candida rugosa)脂肪酶(NKA-CRL)为最适宜的催化剂,以正己烷为反应介质,在酸醇摩尔比为2和添加酶蛋白质量7.5%的海藻糖的条件下,40°C反应10 h,酯化率达到96.6%.连续6次催化后,植物甾醇的酯化率仍维持在85.0%以上.  相似文献   

10.
In the last few years new copolymeric supports for the immobilization of biological compounds have been developed. The graft copolymer polyethylene-g.co-hydroxyethyl methacrylate, partially hydrolyzed, has shown to be a very promising support for this purpose.

The more recent work in the preparation and characterization of this copolymer, as well as the immobilization of a lipase, is reported in this paper. Branches of poly(hydroxyethyl methacrylate) were grafted onto low density polyethylene by using gamma radiation. The influence of the presence and absence of air, as well as the monomer concentration on the yield of grafting were evaluated.

The obtained copolymers were characterized by DSC and FTIR. The influence of the support properties on the synthesis biocatalytic activity was detected.  相似文献   


11.
《Electroanalysis》2003,15(17):1364-1368
An enzyme electrode for glucose is described as a model system to demonstrate a fabrication method using latex aggregation and entrapment of enzyme. Electrosterically‐stabilized latex particles synthesized by emulsion polymerization in batch from acrylic acid, methyl methacrylate and butyl acrylate, and glucose oxidase were coagulated together at pH 5.5 with ethanol. A platinum disk electrode dipped in the solution becomes coated with latex/enzyme. The relative thickness of the film and relative amount of enzyme may be controlled by the time the electrode is in contact with the solution. The enzyme was then immobilized by covalent attachment of amine groups to carboxylic moieties in the polymer using 1‐ethyl‐3(3‐dimethylaminopropyl)‐carbodiimide hydrochloride and N‐hydroxysuccinimide. Five minutes contact with the latex/enzyme solution and subsequent amide coupling, gave electrodes with a reproducibility of 5.7% RSD, a wide dynamic range (0–100 mM) and good storage properties.  相似文献   

12.
A series of functionalized ionic liquid modified mesoporous silicas SBA-15 (FIL-SBA) were synthesized by modulating the loading and cation/anion ratio of the functionalized ionic liquid (FIL). The prepared materials FIL-SBA were used as a novel carrier system to immobilize porcine pancreas lipase (PPL). Enzymatic activity and reusability of the immobilized enzyme were investigated using the triacetin hydrolysis reaction. The combined advantages of the nano-sized pore diameter, large surface area and high pore volume of SBA-15, and the tunable properties of the FIL for enzymes immobilized in FIL-SBA gave a maximum improvement of 570% in relative activity, with 63% retention of initial activity after five cycles of use. Carriers and immobilized enzymes were characterized using nitrogen adsorption, small-angle X-ray diffraction (SXRD), Fourier transform infrared (FT-IR), elemental analysis, nuclear magnetic resonance (NMR), scanning and transmission electron microscopy (SEM and TEM). It was shown that the introduction of FIL influenced the catalytic behavior of PPL significantly by changing the structure and surface properties of the carriers.  相似文献   

13.
Targeted synthesis of kagome ( kgm ) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric “two-in-one” monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60@m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.  相似文献   

14.
借助溶热法制备了一种亲水及生物相容良好的Fe3O4磁性纳米粒子,用γ-氨丙基三乙氧基硅烷直接对所得磁性粒子表面改性,然后用戊二醛偶联法制得了固定化猪胰脂肪酶.表征研究显示,所得磁性粒子粒径约200 nm,具有良好的单分散性和磁响应性.考察了戊二醛浓度、给酶量和反应时间对脂肪酶固定化过程的影响,并通过游离酶与固定化酶的比...  相似文献   

15.
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.  相似文献   

16.
青霉素G酰化酶(PGA)是一种重要的工业生物催化剂,常用于以青霉素G为底物生产7-氨基去乙酰氧基头孢烷酸(7-ADCA)和6-氨基青霉烷酸(6-APA)等半合成β-内酰胺类抗生素.然而,PGA较差的稳定性和可重复使用性能限制了其在工业上的广泛应用.因此,将PGA固定在固体载体上是很有必要的,可以形成一种可重复使用的高性能的多相催化剂.用于生物酶固定化的良好载体应具备以下条件:(1)载体表面具有可用于与生物酶多点结合的高密度的官能团;(2)载体具有较大的比表面积以固定更多的生物酶.通常情况下,可以通过减小载体的粒径来增加其比表面积,然而,小粒径的载体很难从反应混合液中分离出来,造成固定化酶回收使用困难.为了将聚合物微球的优异固定化性能与磁性纳米粒子的独特顺磁性结合起来,我们制备了一种含环氧基团的顺磁性聚合物微球作为PGA的固定化载体.但由于Fe_3O_4纳米颗粒具有较高的表面能,在反相悬浮聚合反应过程中容易团聚成大颗粒,从而导致制备的顺磁性聚合物微球的磁体含量、表面形貌和粒径分布存在差异.此外,Fe_3O_4纳米颗粒与聚合反应单体之间的相容性不好,使得部分磁性颗粒不能很好地包埋于聚合物微球内部,影响固定化酶的活性和操作稳定性.本文以N,N′–亚甲基双丙烯酰胺为交联剂,以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体,用反相悬浮聚合方法在SiO_2包覆的Fe_3O_4纳米颗粒表面成功制备出含环氧基团的顺磁性聚合物微球.用SEM,FT-IR,XRD,VSM和低温氮气吸附等手段对含环氧基团的顺磁性聚合物微球进行了表征.研究了SiO_2对Fe_3O_4纳米颗粒的包覆和Fe_3O_4/SiO_2纳米颗粒的数量对于固定化酶的初始活性和操作稳定性的影响.SiO_2在反相悬浮聚合过程中发挥重要作用,用SiO_2对Fe_3O_4纳米颗粒进行亲水性改性,有效改善了Fe_3O_4纳米颗粒与聚合反应单体的相容性,将其引入反相悬浮聚合体系中,可以制备得到球形度好、粒径分布均匀和超顺磁性的含环氧基团的顺磁性聚合物微球,其中当Fe_3O_4/SiO_2纳米颗粒的质量比为7.5%时制备的含环氧基团的顺磁性聚合物微球具有最好的PGA固定化性能.PGA通过其活性非必需侧链基团–氨基与顺磁性聚合物微球表面的环氧基团的共价结合来制备顺磁性固定化酶,该固定化PGA的初始活性为430 U/g(wet),在外加磁场的作用下容易回收使用,重复使用10次后可保留99%的初始活性,具有良好的热稳定性和酸碱稳定性,具有较好的工业应用前景.  相似文献   

17.
Lipase was immobilized in silk fibers through glutaraldehyde cross-linking to a maximum loading of 59 U/g silk-fiber and the immobilized lipase was utilized for the hydrolysis of sunflower oil (Helianthus annuus). The hydrolytic activity of the lipase, which was poor in biphasic oil in water system, was increased significantly when the sunflower oil was emulsified in aqueous medium. The hydrolytic activities of the immobilized lipase were 48.73 ± 1.26 U, 36.11 ± 0.96 U, and nil when the substrate sunflower oil was used as emulsion created by a rhamnolipid biosurfactant, Triton X100, and ultrasonication, respectively. Although the efficiency of the immobilized lipase was less than 12% than the corresponding free lipase, the immobilized lipase could be reused for the biosurfactant-mediated hydrolysis of sunflower oil up to third cycle of the reaction. The yield of the fatty acids in the second, third, and fourth cycles were 49.45%, 22.91%, and 5.09%, respectively, of the yield obtained in the first cycle.  相似文献   

18.
Cellulose-based carriers Granocel were specially prepared and optimised for covalent immobilization of enzymes. The effects of carrier characteristics such as pore size, chemistry of anchor groups and their density on invertase immobilization efficiency were evaluated. It was found that the preferential adsorption/binding of the enzyme to a carrier during coupling and its activity after immobilization depended on microenvironmental effects created by hydrophilic surface of the carrier, functional groups and their activators. The best preparations (activity approx. 300 U/mL, high storage stability) were obtained for NH2-Granocel activated with glutaraldehyde. It is probably due to Granocel modification with pentaethylenehexamine that gave a 19-atom spacer arm. The enzyme concentration in coupling mixture was optimised as well. The kinetic parameters of sucrose hydrolysis for native and immobilized invertase were evaluated. Compared to the native invertase, K m value of immobilized enzyme was only twice higher with about three times lower substrate inhibition. Reaction runs in a well mixed batch reactors with native and immobilized invertase showed slightly slower reaction rate in the case of the enzyme covalently bound to Granocel. Very good stability of cellulose-based carrier was proved experimentally by 20 successive reaction runs in a batch reactor.  相似文献   

19.
Synchronous fluorescence and time-resolved fluorescence spectroscopic studies that reveal the interaction of epicocconone with human serum albumin is significantly different from its interaction with surfactant assemblies. This observation, along with steady-state fluorescence data, indicates ground-state interaction between the fluorophore epicocconone and the protein. Similarity in fluorescence properties with the adduct of the fluorophore with n-butylamine indicates that bonding occurs at the N-terminus of the protein.  相似文献   

20.
IntroductionLipases are biotechnologically important enzymes,which are able to catalyze the hydrolysis/synthesis of awide range of soluble or insoluble carboxylic acid estersand amides.In this way,the enzymes have been wide-ly used biotechnologically in dairy industry,oil pro-cessing,the production of surfactants,and the prepara-tion of enantiomerically pure pharmaceuticals[1,2].However,like mostenzymes for industrial applica-tions,lipases are unstable and easy to lose their cata-lytic activit…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号