首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile, rapid and sensitive methods for the determination of tetramisole hydrochloride in pure and in dosage forms are described. The procedures are based on the formation of coloured products with the chromogenic reagents alizarin blue BB (I), alizarin red S (II), alizarin violet 3R (III) and alizarin yellow G (IV). The coloured products showed absorption maxima at 605, 468, 631 and 388 nm for I-IV, respectively. The colours obtained were stable for 24 h. The colour system obeyed Beer's law in the concentration range 1.0-36, 0.8-32, 1.2-42 and 0.8-30 microg ml(-1) respectively. The results obtained showed good recoveries with relative standard deviations of 1.27, 0.96, 1.13 and 1.35%, respectively. The detection and determination limits were found to be 1.0 and 3.8, 1.2 and 4.2, 1.0 and 3.9 and finally 1.4 and 4.8 ng ml(-1) for I-IV complexes, respectively. Applications of the method to representative pharmaceutical formulations are represented and the validity assessed by applying the standard addition technique, which is comparable with that obtained using the official method.  相似文献   

2.
Two methods are described for the simultaneous determination of mebeverine hydrochloride (MB) and sulpiride (SU) in their combinations. The first method depends on the first derivative of the ratio spectra by measurement of the amplitudes at 263.7 and 234.9 nm for MB and SU, respectively. The linear ranges and detection limits are 4.0-40.0 and 0.72 microg/ml for MB and 1.0-10.0 and 0.34 microg/ml for SU. In the second case, a chemometric (classical least squares) method was developed. The concentration data matrices were obtained by using different concentrations of pure drugs in 0.1 M HCl. The absorbance data matrix corresponding to each concentration data matrix was obtained by the measurements of absorbances in the range 200-300 nm in their zero order spectra; then calibration was obtained by using the absorbance data matrix and the concentration data matrix for the prediction of the unknown concentrations of MB and SU in their mixture. The numerical values were calculated by using Matlab R12 version 6.0 and Origin 5.0 software. The procedures do not require any separation steps. These two methods were successfully applied for assaying the pharmaceutical formulation, of Colona tablets.  相似文献   

3.
Hussein SA  Mohamed AM  Hassan HY 《Talanta》1989,36(11):1147-1149
A simple and sensitive spectrophotometric method has been developed for the determination of some dibenzazepines, based on reaction with picryl chloride in chloroform medium and measurement at 395 nm. Beer's law is obeyed in concentration ranges 0.1-1.0 microg/ml for imipramine hydrochloride, trimipramine maleate and opipramol dihydrochloride, 0.16-1.6 microg/ml for desipramine hydrochloride and 0.4-2.4 microg/ml for clomipramine hydrochloride. The method was applied successfully to the determination of dibenzazepines in tablets and the results were comparable to those obtained by official procedures.  相似文献   

4.
Basavaiah K  SriLatha  Swamy JM 《Talanta》1999,50(4):887-892
A simple, rapid and sensitive spectrophotometric method has been developed for the assay of ceterizine hydrochloride (CTZH) in bulk drug and its pharmaceutical preparations. This method is based on the ion-pair complex reaction between CTZH and Alizarin Red S in Clarks-Lubs buffer. The chromogen being extractable with chloroform, could be measured quantitatively at 440 nm. All variables were studied to optimise the reaction conditions. Regression analysis of Beer's Law plot showed good correlation in the concentration range 2.5-22 microg ml(-1). The method has a detection limit of 0.1328 microg ml(-1). The proposed method has been successfully applied for the analysis of the bulk drug and its dosage forms such as tablets and syrups. No interference was observed from common pharmaceutical adjuvants.  相似文献   

5.
Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 microg ml(-1). The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as pi-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 microg ml(-1). The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 microg ml(-1). The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity (epsilon), limit of detection (LOD, microg ml(-1)) and limit of quantitation (LOQ, microg ml(-1)), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically.  相似文献   

6.
A spectrofluorimetric method was described for the determination of drugs containing active methylene groups adjacent to carbonyl groups. The method was applied successfully to the determination of three life saving cardiovascular drugs, with narrow therapeutic indices: pentoxifylline (I), propafenone hydrochloride (II) and acebutolol hydrochloride (III), in laboratory-prepared mixtures, in commercial tablets and in plasma samples. The method involved the reaction of each of the tested drugs with N1-methyl nicotinamide chloride (NMNCl) in the presence of alkali, followed by addition of formic acid, where highly fluorescent reaction products were produced. The produced fluorescence were measured quantitatively at 472 nm (lambdaex 352 nm), 409 nm (lambdaex 310 nm) and 451 nm (lambdaex 266 nm) for (I), (II), and (III) respectively. The method was linear over concentration ranges of 10-1000 microg/ml , 0.2-12 microg/ml and 0.08-10 microg/ml in standard solutions for (I), (II), and (III) respectively. In spiked human plasma samples, calibration graphs were linear over concentration ranges of 20-1000 microg/ml, 0.2-15 microg/ml and 0.08-10 microg/ml for (I), (II), and (III) respectively. The method showed good accuracy, specificity and precision in both laboratory-prepared mixtures and spiked human plasma samples. The proposed method is simple, with low instrumentation requirements, suitable for quality control application, bioavailability and bioequivalency studies.  相似文献   

7.
Two simple, sensitive and rapid extractive spectrophotometric methods have been developed for the assay of the antidepressant drug nortriptyline (NOR) hydrochloride in pure form and in different dosage forms. The methods involve the formation of colored ion-pairs between the drug and the complex of niobium(V)-thiocyanate (Nb-SCN) or iron(III)-thiocyanate (Fe-SCN) followed by their extraction with butanol or a mixture of butanol and chloroform and quantitative determination at 360 nm and 490 nm, using Nb-SCN and Fe-SCN, respectively. The experimental conditions were optimized to obtain the maximum colour intensity. The methods permit the determination of nortriptyline over a concentration range of 15-100 microg/ml and 5-24 microg/ml with the detection limit of 0.84 microg/ml and 0.32 microg/ml, using Nb-SCN and Fe-SCN, respectively. The proposed methods are applicable for the assay of the investigated drug in different dosage forms and the results are in good agreement with those obtained by the official and HPLC methods. No interference was observed from common excipients present in pharmaceutical formulations. The proposed procedures were applied to determine the amount of nortriptyline hydrochloride as active ingredient in the presence of its degradation product, dibenzosuberone. The extractive spectrophotometric methods can also be used to determine the amount of nortriptyline hydrochloride in tablets after its solid phase extraction (SPE).  相似文献   

8.
A simple, highly sensitive and dye-less assay for proteins was reported using a resonance light-scattering (RLS) technique based on the enhanced RLS intensity of beta-cyclodextrin (beta-CD)-sodium dodecylsulfate (SDS)-protein system. Under the optimum conditions, the enhanced RLS intensity is in proportion to the concentration of proteins in the range of 0.01 to 2.3 microg ml(-1) for bovine serum albumin (BSA), 0.01 to 2.0 microg ml(-1) for human serum albumin (HSA), 0.015 to 5.0 microg ml(-1) for gamma-globulin (gamma-G), 0.02 to 3.5 microg ml(-1) for egg albumin (EA), 0.02 to 4.0 microg ml(-1) for pepsin (Pep), and 0.02 to 3.6 microg ml(-1) for alpha-chymotrypsin (Chy). Their detection limits (S/N = 3) are 1.1, 1.6, 2.4, 6.7, 5.4 and 4.2 ng ml(-1), respectively. Synthetic samples and human serum samples were determined satisfactorily, and the results were in reasonable agreement with those obtained by a documented spectrophotometric (Bradford) method.  相似文献   

9.
Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drug with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320 nm or the fluorescence intensity of the produced cerous(III) ion at 363 nm (excitation at 250 nm). Beer's law obeyed from 1.0-7.0 microg ml(-1) and 0.25-2.5 microg ml(-1) acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed methods were successfully applied for determination of the selected drug in its pharmaceutical preparation with good recoveries.  相似文献   

10.
The main aim of this work is to develop and validate two spectrophotometric methods for the quantitative analysis of rabeprazole sodium in commercial dosage forms. Method A is based on the reaction of drug with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) in the presence of ammonium cerium(IV) nitrate in acetic acid medium at room temperature to form red-brown product which absorbs maximally at 470 nm. Method B utilizes the reaction of rabeprazole sodium with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethyl sulfoxide (DMSO) at 45+/-1 degrees C to form yellow colored Meisenheimer complex. The colored complex has a characteristic band peaking at 420 nm. Under the optimized reaction conditions, proposed methods are validated as per ICH guidelines. Beer's law is obeyed in the concentration ranges of 14-140 and 7.5-165 microg ml(-1) with linear regression equations of A=6.041 x 10(-4)+1.07 x 10(-2)C and A=1.020 x 10(-3)+5.0 x 10(-3)C for methods A and B, respectively. The limits of detection for methods A and B are 1.38 and 0.75 microg ml(-1), respectively. Both methods have been applied successfully for the estimation of rabeprazole sodium in commercial dosage forms. The results are compared with the reference UV spectrophotometric method.  相似文献   

11.
Spectrophotometric determination of procaine hydrochloride is described. The procaine hydrochloride reacts with 1,2-naphthoquinone-4-sulfonic acid in pH 3.60 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 484 nm, epsilon(484)=5.22 x 10(3).The absorbance for procaine hydrochloride from 0.30 to 100 microg ml(-1) obeys Beer's law. The linear regression equation of the calibration graph is C=19.23A-0.03, with a linear regression correlative coefficient is 0.9996, the detection limit is 0.28 microg ml(-1); recovery is from 98.0 to 105.2%. Effects of pH, surfactant, organic solvent, foreign ions, and standing time on the determination of procaine hydrochloride have been examined. This method is rapid and simple, and can be used for the determination of procaine hydrochloride in injection solution of procaine hydrochloride. The results obtained by this method agreed with those by the official method (dead-stop titration).  相似文献   

12.
Huang Y  Chen Z 《Talanta》2002,57(5):953-959
A new chemiluminescence (CL) method is proposed for the determination of chlorpromazine hydrochloride, a drug often used to treat the psychiatric patients suffering from clinical depression. The method is based on the reaction between studied drug and Ce(IV) in a nitric acid medium and measurement of the CL intensity produced by rhodamine 6G used as a sensitizer. In the optimum conditions, CL intensities are proportional to concentrations of the studied drug over the range 0-1x10(-5) g ml(-1) with a detection limit of 6.5x10(-9) g ml(-1). The relative standard deviation (R.S.D.) is 4.1% for 1.5x10(-6) g ml(-1) chlorpromazine hydrochloride (n=11). The method has been applied to the determination of studied drug in tablets and biological fluids with satisfactory results.  相似文献   

13.
A zero-crossing first-derivative spectrophotometric method is applied for the simultaneous determination of naphazoline hydrochloride and antazoline phosphate in eye drops. The measurements were carried out at wavelengths of 225 and 252 nm for naphazoline hydrochloride and antazoline phosphate, respectively. The method was found to be linear (r2>0.999) in the range of 0.2-1 microg/ml for naphazoline hydrochloride in the presence of 5 microg/ml antazoline phosphate at 225 nm. The same linear correlation (r2>0.999) was obtained in the range of 1-10 microg/ml of antazoline phosphate in the presence of 0.5 microg/ml of naphazoline hydrochloride at 252 nm. The limit of determination was 0.2 microg/ml and 1 microg/ml for naphazoline hydrochloride and antazoline phosphate, respectively. The method was successfully used for simultaneous analysis of naphazoline hydrochloride and antazoline phosphate in eye drops without any interference from excipients and prior separation before analysis.  相似文献   

14.
Two simple and accurate spectrophotometric methods are presented for the determination of beta-lactam drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure and in different pharmaceutical preparations. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) pi-acceptor and potassium iodate via oxidation reduction reaction where the highly coloured complex species or the liberated iodine have been spectrophotometrically studied. The optimum experimental conditions have been studied carefully. Beer's law is obeyed over the concentration range of 2-450 microg ml(-1) for Fluclox and 10-450 microg ml(-1) for Diclox using DDQ reagent and at 50-550 microg ml(-1) for Fluclox and 50-560 microg ml(-1) for Diclox using iodate method, respectively. For more accurate results, Ringbom optimum concentration range is calculated and found to be 6-450 and 15-450 microg ml(-1) for Fluclox and Diclox using DDQ, respectively, and 65-550 and 63-560 microg ml(-1) for Fluclox and Diclox using iodine, respectively. The Sandell sensitivity is found to be 0.018 and 0.011 microg cm(-2) for DDQ method and 0.013 and 0.011 microg cm(-2) for iodate method for Fluclox and Diclox, respectively, which indicates the high sensitivity of both methods. Standard deviation (S.D.=0.01-0.80 and 0.07-0.98) and relative standard deviation (R.S.D.=0.13-0.44 and 0.11-0.82%) (n=5) for DDQ and iodate methods, respectively, refer to the high accuracy and precision of the proposed methods. These results are also confirmed by between-day precision of percent recovery of 99.87-100.2 and 99.90-100% for Fluclox and Diclox by DDQ method and 99.88-100.1 and 99.30-100.2% for Fluclox and Diclox by iodate method, respectively. These data are comparable to those obtained by British and American pharmacopoeias assay for the determination of Fluclox and Diclox in raw materials and in pharmaceutical preparations.  相似文献   

15.
A simple, sensitive and rapid spectrophotometric method was developed for the determination of thallium(III) using trifluoperazine hydrochloride (TFPH). The method is based on the oxidation of TFPH by thallium(III) in a phosphoric acid medium to form a red-colored radical cation with an absorption maximum at 505 nm. Beer's law is valid over the concentration range of 0.5 - 6.5 microg ml(-1) of thallium(III). The molar absorptivity and Sandell's sensitivity of the color system are 2.14 x 10(4) l mol(-1) cm(-1) and 0.0095 microg cm(-2), respectively. The optimum reaction conditions and other analytical parameters were evaluated. The tolerance limit of the method towards various ions usually associated with thallium has been studied. The proposed method has been successfully applied to the analysis of thallium in alloys, minerals, standard reference material, water, and urine samples.  相似文献   

16.
A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.  相似文献   

17.
Two sensitive and selective spectrofluorimetric and spectrophotometric stability-indicating methods have been developed for the determination of some non-steroidal anti-inflammatory oxicam derivatives namely lornoxicam (Lx), tenoxicam (Tx) and meloxicam (Mx) after their complete alkaline hydrolysis. The methods are based on derivatization of alkaline hydrolytic products with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). The products showed an absorption maximum at 460 nm for the three studied drugs and fluorescence emission peak at 535 nm in methanol. The color was stable for at least 48 h. The optimum conditions of the reaction were investigated and it was found that the reaction proceeds quantitatively at pH 8, after heating in a boiling water bath for 30 min. The methods were found to be linear in the ranges of 1-10 microg ml(-1) for Lx and Tx and 0.5-4.0 microg ml(-1) for Mx for spectrophotometric method, while 0.05-1.0 microg ml(-1) for Lx and Tx and 0.025-0.4 microg ml(-1) for Mx for the spectrofluorimetric method. The validity of the methods was assessed according to USP guidelines. Statistical analysis of the results revealed high accuracy and good precision. The suggested procedures could be used for the determination of the above mentioned drugs in pure and dosage forms as well as in the presence of their degradation products.  相似文献   

18.
Bromate is a well known by-product produced by the ozonisation of drinking water; the allowed concentration for human consumption has to be regulated to the low microg l(-1) range. A direct injection, ion chromatographic method was developed using a tetraborate eluent with serially connected conductivity and spectrophotometric detection. Bromate was detected after post-column reaction with fuchsin at 520 nm. Sample capacity was investigated by injecting large volumes (up to 6 ml) using a high total hardness and chloride tap water. Linear correlation of bromate response with volumes from 1 ml to 6 ml was demonstrated, the main limitation being the overlapping of the chloride peak with bromate. Up to 1.5 ml sample can be injected without any pre-treatment. With more than 1.5 ml injection volume, a sample pre-treatment with a cartridge in Ag and H form, followed by a 10 min degassing in an ultrasonic bath, was needed. This method was validated by analysing secondary reference materials and real samples from a drinking water treatment plant. The method was linear from the limit of quantification to 20 microg l(-1). Reproducibilities in tap water were 18% (5 microg l(-1), n=12) and 21% (1 microg l(-1), n=4) respectively for 1.5 and 6 ml injection volumes with conductivity detection, and 17% at 0.5 microg l(-1) (n=9) with spectrophotometric detection. Calculated detection limits were 0.5 microg l(-1) (6 ml) ahd 2 microg l(-1) (1.5 ml) for conductivity detection and 0.3 microg l(-1) (1.5 ml) for spectrophotometric detection.  相似文献   

19.
A rapid, simple and sensitive method for the determination of aminophylline (Ami) using sodium 1, 2-naphthoquine-4-sulfonate (NQS) and methanol is established in this paper. It is based on the fact that a russety product can be formed by the reaction between aminophylline (Ami) and sodium 1, 2-naphthoquine-4-sulfonate (NQS) in pH 13.00 buffer solution. When methanol is added to the solution, the sensitivity of the color development reaction between Ami and NQS is improved, and the color of the system of NQS-Ami becomes a salmon pink. Beer's law is obeyed in a range of 4.97-69.5 microg ml(-1) of Ami at the maximum absorption of 453 nm (epsilon=4.87 x 10(3) l mol(-1) cm(-1)). The linear regression equation of the calibration curve is A=0.14458+0.00832C (microg ml(-1)), with a linear regression correlation coefficient of 0.9944. The detection limit is 0.7 microg ml(-1) (3sigma/k), R.S.D. is 1.1% and the recovery rate is in range of 92.5-105%. Furthermore, this method has been successfully applied to the determination of Ami in pharmaceutical samples.  相似文献   

20.
A chemiluminescence (CL) method using flow injection (FI) has been investigated for the rapid and sensitive determination of enalapril maleate. The method is based on the CL reaction of the drug with tris(2,2'-bipyridyl)ruthenium(II), Ru(bipy)3(2+) and acidic potassium permanganate. After selecting the best operating parameters, calibration graphs were obtained over concentration ranges of 0.005-0.2 microg/ml and 0.7-100 microg/ml with a detection limit (S/N=2) of 1.0 ng/ml. The average % found was 99.9 +/- 0.7 and 100.2 +/- 0.3 for the two concentration ranges respectively. %RSD (n=10) for 5.0 microg/ml was 0.44. The method was successfully applied to the determination of enalapril maleate in dosage forms and biological fluids without interferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号