首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
基于密度泛函理论的第一性原理,采用广义梯度近似(GGA)下的线性缀加平 面波(FP-LAPW)方法,应用WIEN2K软件计算了超晶胞结构Sn1-xNxO2材料的总态密度、能带结构和光学折射率及介电函数虚部.计算结果表明掺杂后费米能级向低能方向移动,随着掺杂量的增加,Sn1-xNxO2材料的价带和导带的分裂程度增强,禁带宽度逐渐减小,并且在1.35~ 2.50 eV的能量范围上形成了杂质带,其主要来源是N的2p态上的电子.分析Sn1-xNxO2材料的能带结构可知掺杂前后均是直接跃迁半导体,掺杂后其介电函数谱和折射率也与带隙相对应地发生红移,介电谱的跃迁峰与电子从价带到导带的跃迁有关,从理论上指出光学性质与电子结构之间的内在关系.  相似文献   

2.
采用基于密度泛函理论的第一性原理研究了 N掺杂, Nd掺杂,和Nd/N共掺杂对锐钛矿相TiO2晶格参数、能带结构、电荷布居、电子态密度和光吸收性质的影响.结果表明,杂质的引入不同程度的改变了TiO2的晶格参数,Nd的掺杂使TiO6八面体畸变最大;N掺杂TiO2使带隙宽度减小,且在价带顶出现杂质能级;Nd掺杂和Nd/N共掺杂不仅使TiO2带隙宽度减小并在其价带和导带之间出现了空带,空带主要由Nd原子的4f轨道能级所贡献;由于禁带宽度的减小和杂质能级的出现使得掺杂后TiO2的吸收光谱的吸收边向可见光方向移动,增加了物质对光吸收的响应范围.  相似文献   

3.
采用基于密度泛函理论的第一性原理赝势平面波法,计算未掺杂与P替换Si、C以及P间隙掺杂6H-SiC的电子结构与光学性质。结果显示未掺杂的6H-SiC是带隙为2.052 eV的间接带隙半导体,P替换Si、C掺杂以及P间隙掺杂6H-SiC带隙均减小,分别为1.787 eV、1.446 eV和0.075 eV,其中P间隙掺杂带隙减小幅度最大。P替换掺杂6H-SiC使得费米能级向导带移动并插入导带中,呈n型半导体。P间隙掺杂价带中的一条能级跨入费米能级,因此在禁带中出现一条P 3p杂质能级,P间隙掺杂6H-SiC转为p型半导体。替换与间隙掺杂使得6H-SiC的介电函数实部增大,介电函数虚部、吸收光谱、反射光谱与光电导率红移,其中P间隙掺杂效果最佳。通过P掺杂材料的电导率增强,对红外波段的利用率明显提高,为6H-SiC在红外光电性能方面的应用提供有效的理论依据。  相似文献   

4.
采用基于密度泛函理论的第一性原理赝势平面波方法,研究了未掺杂Mg2Si以及Na、Lu掺杂Mg2Si的电子结构和光学性质.计算结果表明:Na掺杂Mg2Si后,费米能级进入价带,呈p型导电;Lu掺杂Mg2Si后,费米能级进入导带,呈n型导电.未掺杂Mg2Si对于能量低于0.5eV的光子几乎不吸收,但Na、Lu掺杂的Mg2Si对于能量低于0.5eV的光子还存在较大的吸收,即Na、Lu掺杂改善了Mg2Si对红外光子的吸收.掺杂后,可见光区的吸收系数与反射率明显减小,这说明掺杂的Mg2Si在可见光区的透过率增大.计算结果为Mg2Si 基光电器件的设计与应用提供了理论依据.  相似文献   

5.
采用基于密度泛函理论的第一性原理,计算了未掺杂,Cu、I单掺杂以及Cu-I共同掺杂锐钛矿相TiO2的电子结构和光学性质.结果 表明,Cu、I单独掺杂TiO2都使得吸收带边红移,I单掺时I5p跟O2p态造成禁带宽度变小,吸收带边红移,Cu单掺时Cu的3d态杂质能级引入价带顶部造成禁带宽度变小,吸收带边红移更加明显.对于Cu-I共同掺杂TiO2,Cu主要作用于价带顶,I主要作用于导带底,进而引入杂质能级,使得禁带宽度明显减小,吸收带边明显红移,通过Cu-I协同作用形成电子、空穴俘获中心,有效地阻碍了电子-空穴对的复合,提高了对可见光的催化效率.  相似文献   

6.
本文采用基于密度泛函理论的第一性原理计算了不同浓度Nb掺杂ZnO的能带结构及性能,并对本征ZnO、Al掺杂ZnO(AZO)和Nb掺杂ZnO(NZO)的模拟结果进行对比分析。结果表明:(1)NZO和AZO的带隙值均低于本征ZnO的带隙值,掺杂浓度(原子数分数)同为6.25%的NZO的带隙值低于AZO的带隙值。随着Nb掺杂浓度增高,NZO的导带底明显降低,态密度峰值降低,且Nb-4d态电子占据了费米能级的主要量子态。(2)随着掺杂浓度的增加,NZO和AZO吸收峰和介电函数峰均降低,且向低能区移动,其中,NZO吸收峰向低能区移动更明显,且介电函数虚部分别在0.42 eV和34.29 eV出现新的峰,主要是价带中Nb-4d和Nb-5p电子能级跃迁所致。掺杂浓度同为6.25%的NZO的静介电常数大于AZO的静介电常数,表明NZO极化能力更强,NZO可以更有效改善ZnO的光电性能。随着Nb掺杂浓度增加,NZO的吸收系数和介电函数虚部强度增加且向高能区移动。NZO的模拟结果为高价态元素Nb掺杂ZnO的实验研究工作及实际应用提供了理论参考。  相似文献   

7.
基于密度泛函理论广义梯度近似第一性原理计算的方法,系统研究了Ca掺杂ZnO氧化物的晶格结构和电子结构,在此基础上分析了其电学性能.结果表明,Ca掺杂ZnO晶胞减小.Ca掺杂氧化物仍为直接带隙半导体材料,带宽达1.5 eV.掺杂体系费米能级附近的能带主要由Cas态、Cap态、Znp态和Op态电子构成,其中p态电子对价带态贡献最大,且Cas态、Znp态和Op态电子之间存在着更强的相互作用.Ca掺杂ZnO氧化物费米能级EF附近载流子浓度增加,运动速度减小,有效质量增加,导电机构为Cas态、Znp态和Op态电子在价带与导带的跃迁,具有更高的电导率,较高的Seebeck系数和综合电性能.  相似文献   

8.
基于密度泛函理论的第一性原理平面波超软赝势计算方法,计算分析了纯金红石相TiO2,Ce、Nd、Eu和Gd四种稀土元素单掺杂金红石相TiO2,以及与N共掺金红石相TiO2的晶体结构、电子结构和光学性质.由掺杂前后的结果分析发现,掺杂后晶胞膨胀,晶格发生畸变;费米能级上移进入导带,导带底部引入杂质能级,提高了掺杂体系的电导率和对可见光的响应;光学性质、介电函数和吸收谱掺杂体系峰值比纯TiO2小,反射谱和能量损耗谱出现红移现象.  相似文献   

9.
采用基于密度泛函理论(DFT)的第一性原理计算方法,计算了Mn4Si7及Mo掺杂Mn4Si7的电子结构和光学性质.计算结果表明Mn4 Si7的禁带宽度Eg=0.804 eV,Mo掺杂Mn4Si7的禁带宽度Eg=0.636 eV.掺杂使得Mn4 Si7费米面附近的电子结构发生改变,导带底由Γ点转移为Y点向低能方向下偏移,价带顶向高能方向上偏移,带隙变窄.计算还表明Mo掺杂Mn4Si7使介电函数、折射率、吸收系数及光电导率等光学性质增加.  相似文献   

10.
周祎  张昌文  王培吉 《人工晶体学报》2013,42(11):2432-2438
采用基于密度泛函理论的线性缀加平面波(FLAPW)方法,研究了3d族过渡金属元素Fe对Ⅲ-Ⅴ族半导体InP的电子结构和光学性质的调控机理,并对其能带结构和电荷密度分布进行了分析.结果表明,InP为直接带隙半导体,其价带主要由P-3s和3p态构成,而导带则由In-5s电子态构成.当Fe元素替代In原子后,由于Fe和P原子的轨道杂化作用,InP带隙中出现杂质态,Fe-3d态产生自旋极化效应.随着Fe的掺杂浓度增大,Fe-P原子之间轨道杂化作用明显增加,费米能级逐渐进入价带,这导致了材料的电子跃迁几率提高,光学吸收边明显增强,跃迁峰发生红移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号