首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
蔡军 《分析测试学报》2001,20(Z1):214-215
催化裂解(DCC)轻汽油中的叔碳烯烃质量分数在30%以上,这些烯烃可作为醚化原料,用于生产高辛烷值优质车用汽油调和组分.但醚化前需对其中共轭二烯烃进行选择性加氢,以保护下游加工过程的催化剂.因此,准确、简单、快速测定样品中共轭二烯烃的含量对炼油工艺十分必要.  相似文献   

2.
在提升管催化裂化中试装置上,考察了操作苛刻度对重油催化裂化(RFCC)装置沉降器中油气重组分,特别是大于550℃的馏分以及油浆中胶质、沥青质的影响,并结合操作苛刻度对产品分布的影响规律,建立了操作苛刻度函数。结果表明,随着操作苛刻度的提高,油浆中的馏分呈现出中间馏分增加,两端馏分降低的变化趋势,并且油浆中大于550℃馏分的含量明显减少,油浆中的胶质、沥青质含量减少。随着操作苛刻度的提高,在一定范围内轻质油收率基本不变,但是达到一定反应程度后,轻质油产率明显降低。建立的操作苛刻度函数为合理控制操作条件,保证目的产物收率的同时降低了油气中重组分的含量,从而为防止沉降器结焦提供了操作依据。  相似文献   

3.
Ⅲ.二烯烃;乙炔及其衍生物二烯烃是具有两个双键的碳氢化合物,双键是共轭的、有(?)C=C—C=C(?)基因。我们说两个双键是共轭的,那是因为它们在加成作用成为均一的反应。基本的碳氢化合物,同时也是这组最主要的代表,是1,3-丁二烯,它是合成橡胶含有的主要成分。可以采取不同的途径制备丁二烯。工业上最常使用的方法,系利用一定的石油馏分。从热裂气或再形成气(Reforming sas)的C_4-馏分经过萃取蒸馏可分出  相似文献   

4.
聚氯乙烯树脂的不饱和度和热稳定性的关系   总被引:6,自引:0,他引:6  
用紫外 可见光谱法表征了不同来源的聚氯乙烯树脂(PVC)的热稳定性,用一氯化碘加成法测量了PVC的总的双键含量,用红外光谱法测量了PVC的孤立双键和共轭双键的相对含量.结果表明,PVC在加工期间的初期着色行为和长期热稳定性并不直接相关,前者取决于PVC分子链中共轭双键的含量,而后者则和孤立双键的含量有关  相似文献   

5.
徐亚贤  曲海波  常勇  吕九琢 《色谱》1995,13(1):56-58
 利用气相色谱快速、准确的分析特点,代替滴定法测定油品中共轭二烯烃合成反应后的水解、滴定等复杂步骤,分析时间是原来的1/5~1/6。研究了二烯合成反应的反应程度和碘、三氯化铝作催化剂的情况。建立了独特的内标法和二烯烃含量的计算公式。新法省去复杂的传统计算过程,使测定和计算变得简单、迅速。  相似文献   

6.
利用气相色谱快速、准确的分析特点,代替滴定法测定油品中共轭二烯烃合成反应后的水解、滴定等复杂步骤,分析时间是原来的1/5~1/6。研究了二烯合成反应的反应程度和碘、三氯化铝作催化剂的情况。建立了独特的内标法和二烯烃含量的计算公式。新法省去复杂的传统计算过程,使测定和计算变得简单、迅速。  相似文献   

7.
本文合成了四个4′-苯多烯酰基苯并15-冠-5和一个4′-苯酰基苯并15-冠一5等五个三岔共轭化合物。测定了它们的电子吸收光谱,红外光谱。并用同系因子(1/2)~(2/N)考查了这类三岔共轭体系的同系递变关系。用相似三角形法计算的较短分岔基团苯并15-冠-5的代基当量值△N_5为0.854。这表明苯并15-冠-5不权起代基作用而且它与羰基之间还有一定的共轭作用,约相当于一个双键。此外,还合成了四个3′,4′-二甲氧基苯多烯酮类化合物,将它们的电子光谱与冠醚查耳酮类化合物的进行了比较。  相似文献   

8.
陈兰菊  郭绍辉  赵地顺 《化学通报》2006,69(12):945-947
以负载氧化铜的氧化铝层析柱对催化裂化(FCC)汽油全馏分进行分离,使其中的烷烃、烯烃与芳烃、含硫化合物分离成极性不同的两组,含硫化合物在芳烃组分中得以分离富集。分离后对芳烃组分中的含硫化合物进行氧化,脱硫率达72%。氧化后的芳烃组分与分离出来的烷烃、烯烃组分混兑,可使FCC汽油的总脱硫率达71·3%。  相似文献   

9.
应用共轭双烯使特殊制备的磷钼酸铵还原成钼兰的反应,建立了用比色法测定裂解汽油中共轭双烯含量的新方法。该法具有快速、简单和灵敏度高的特点。并应用气相色谱考察了共轭双烯和磷钼酸铵之间的反应特征.  相似文献   

10.
采用气质联用技术测定了水母雪莲提取物石油醚-丙酮(8∶2)部分,再用正已烷-乙酸乙酯(95∶5)洗脱部分的非烃酯化馏分。实验通过GC-MS法对水母雪莲提取物极性(非烃酯化馏分)进行了分析,其中共分离得到33个组分。采用面积归一化法测定了各组分的百分含量,并用气相色谱-质谱联用技术对其做了分析,结果表明,棕榈酸(Hexadecanoic acid)的含量很高,达39.71%。其次为亚油酸(9,12-Octadecadienoic acid)16.85%,油酸(9-Octadecenoic acid)10.29%,硬脂酸(Octadecanoic acid)5.90%。二甲氧基-十八烷酸的含量为4.23%,乌散烯(12)-酮(3)3.45%,浕-亚麻酸2.83%,三甲基十八烷酸2.80%,二十烷酸(花生酸)的含量为2.30%,β-香树精(β-Amyin)的含量为2.27%,羽扇醇1.33%。其中含量大于1的还有,二十二烷酸。  相似文献   

11.
烯烃在催化裂化催化剂上反应机理的初步研究   总被引:2,自引:3,他引:2  
在自制的微反-色谱装置上,进行了单体烯烃和催化裂化汽油在不同条件下的催化裂化反应实验。对单体烯烃的裂化反应规律和汽油中的烯烃在半再生催化剂和待生催化剂上的催化裂化反应规律进行对比分析。结果表明,单体烯烃反应中,C6及C6以下的烯烃主要发生骨架异构和双键异构反应,氢转移和直接裂化反应发生的较少。C7以上的烯烃95%以上发生转化,高温下直接裂化生成C3、C4,氢转移和异构化比率较大。汽油中的烯烃转化主要集中在C7以上,烯烃之间存在一定的交互作用,单体烯烃的催化裂化反应规律可以初步预测汽油中烯烃的转化。催化剂上的结焦类型对汽油中的烯烃的转化方式没有影响。  相似文献   

12.
赵云  刘家旭  熊光  郭洪臣 《催化学报》2017,38(1):138-145
水热稳定性是决定沸石分子筛工业应用价值的重要影响因素.众所周知,沸石材料的水热稳定性主要受其拓扑机构及骨架硅铝组成的影响,但同时也受其晶粒尺寸的影响.纳米级HZSM-5沸石虽然具有优异的催化性能及抗积碳失活性能,但由于晶粒尺寸较小,导致其水热稳定性较差.如何提高纳米HZSM-5沸石的水热稳定性,使其能够在高苛刻度的水热环境下(如催化裂化过程,催化剂再生需在高于700℃的水热条件下进行)得到应用,是十分有意义的课题.已有研究表明,磷改性可以提高ZSM-5沸石的水热稳定性,但多集中于采用磷酸、磷酸氢二铵、磷酸二氢铵等无机磷化物进行改性,水热稳定性提高效果不能令人满意.我们研究组采用有机磷化合物磷酸三甲酯改性纳米HZSM-5沸石,在提高纳米HZSM-5沸石水热稳定性方面取得了较好的效果.采用X射线衍射(XRD)、氨气程序升温脱附(NH3-TPD)、氮气物理吸附、氨气吸附红外光谱等手段对改性沸石进行了表征.结果表明,采用磷酸三甲酯改性的纳米HZSM-5沸石水热稳定性得到明显提高,沸石经苛刻的高温水蒸气处理(800℃,4 h)后,在相对结晶度、孔结构、酸度的保留度方面具有较大提高,提高幅度明显高于无机磷化合物磷酸氢二铵改性的纳米HZSM-5沸石.在上述研究基础上,我们采用固定床微反模拟流化床反应条件对磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解反应进行了研究.结果表明,在反应温度540℃,剂/油比等于4,油剂接触时间约为4 s的条件下,全馏分FCC汽油在磷改性纳米HZSM-5沸石上经烯烃组分催化裂解反应后,油品烯烃含量(尤其是重烯烃)明显降低,生成了大量高附加值的C2–C4烯烃,同时油品中芳烃含量增加.与此同时,经烯烃组分裂解后的油品还呈现出辛烷值升高,硫含量降低的有利变化.可以看出,磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解是解决FCC汽油烯烃含量高的一条有效途径,充分克服了现有FCC汽油加工工艺存在的一些缺陷,如S-zorb工艺功能单一、成本高;加氢脱硫工艺油品辛烷值损失大、氢耗高;以及OTA技术(本研究组之前的工作)烯烃转化率低、催化剂积碳失活快等缺陷.值得注意的是,磷酸三甲酯改性的纳米HZSM-5沸石在全馏分FCC汽油烯烃组分催化裂解反应性能方面,明显比磷酸二氢铵改性的纳米HZSM-5沸石表现优异.通过我们的研究可以认为,磷酸三甲酯改性将会为纳米HZSM-5沸石在高苛刻度水热条件下的应用提供更多的机会.  相似文献   

13.
A multidimensional method providing the composition of a heavy naphtha in paraffins, isoparaffins, olefins, naphthenes, and aromatics (PIONA) in the C8-C14 range is presented. The analytical set-up consists in a silver modified silica olefin trap on-line coupled to comprehensive two-dimensional gas chromatography (GC x GC). In this configuration, hydrocarbons are separated, in gaseous state, in two fractions, saturate and unsaturate, each fraction being subsequently analysed by GC or by GC x GC. The resolution between saturates and olefins was found to be improved compared to a single GC x GC run. The characterisation of the olefin trap highlights the benefits and the limits related to the use of that stationary phase as a double bond selective fractionation medium.  相似文献   

14.
离子液体降低FCC汽油烯烃体积分数的研究   总被引:11,自引:7,他引:4  
向FCC汽油中分别加入两种与FCC汽油不互溶的Lewis超强酸性离子液体\[Bmim\]Cl-AlCl3 和 \[R4N\]Cl-AlCl3形成液-液两相催化降烯烃体系。结果表明:在汽油辛烷值基本保持不变的基础上,FCC汽油的烯烃体积分数分别下降14.7%和13.1%, 均达到我国新配方汽油规定的烯烃体积分数v<35%的新标准。对离子液体降低FCC汽油的机理及影响因素进行了详细研究。结果表明,正是由于具备Lewis超强酸性的离子液体催化的烯烃与烷烃的烷基化、烯烃与芳烃的烷基化以及烯烃的二聚反应使得FCC汽油中烯烃体积分数显著下降。  相似文献   

15.
Co-oligomers of ethylene and a series of linear α-olefins (propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, and 1-decene) were synthesized with a homogeneous catalyst consisting of sulfonated nickel ylide and diethylaluminum ethoxide at 90°C. GC analysis of the co-oligomerization products allowed complete structural identification of all reaction products, α-olefins with linear and branched chains, vinylidene olefins, and linear olefins with internal double bonds. The article describes the reaction scheme of ethylene–olefin co-oligomerization. The scheme includes chain initiation reactions (insertion of ethylene or an olefin into the Ni? H bond), chain propagation reactions, and chain termination reactions via β-hydride elimination. Primary and secondary inertions of α-olefins into the Ni? H bond in the initiation stage proceed with nearly equal probabilities. Higher olefins participate in the chain growth reactions (insertion into the Ni? C bond) also both in primary and secondary insertion modes. The primary insertion of an α-olefin molecule into the Ni? C bond produces the β-branched Ni? CH2? CR1R2 group. This group is susceptible to β-hydride elimination with the formation of vinylidene olefins. However, the Ni? CH2? CR1R2 groups can participate in further ethylene insertion reactions and thus form vinyl oligomerization products with branched alkyl groups. On the other hand, the secondary insertion of an α-olefin molecule into the Ni? C bond produces the α-branched Ni? CR1R2 bond which does not participate in further chain growth reactions and undergoes the β-hydride elimination reaction with the formation of linear reaction products with internal double bonds. Most co-oligomer molecules contain only one α-olefin fragment. However, the analysis of ethylene-propylene and ethylene-1-heptene co-oligomers allowed identification of products with two olefinic fragments which are also formed in the copolymerization reactions with small yields.  相似文献   

16.
采用外表面覆硅改性,内表面金属锌改性制备了ZnS i/HZSM-5芳构化催化剂,以全馏分FCC汽油为原料,在实验室固定床反应装置上进行催化剂的抗积炭及芳构化性能评价,并探讨了催化剂改性机理。采用XRD、BET、Py-IR及元素分析等方法对催化剂晶相、孔结构、酸性及抗积炭性能进行了表征。结果表明,在500℃、1.5MPa及空速为3.0 h-1的条件下,液相产品中烯烃及芳烃质量分数分别为21.75%和27.32%,锌硅改性催化剂具有较高的活性、稳定性及芳构化降烯烃性能。  相似文献   

17.
A mild and improved method for reducing multiple bonds on various resins with diimide is described. The simple procedure readily generates diimide from 2-nitrobenzenesulfonohydrazide and triethylamine at room temperature. A number of representative multiple bonds in various steric and electronic environments were examined, including polar double bonds such as carbonyl and azo, for ease and selectivity of reduction. A general trend of reactivity was identified which revealed, inter alia, that terminal olefins, 1,2-disubstituted olefins, electron-poor olefins, and terminal alkynes were the most easily reduced.  相似文献   

18.
The estimation of olefinic content in conversion processes such as the etherification of olefins in fluid catalytic cracking (FCC) gasoline is essentially required. Gas chromatography (GC) is the well-established method for the quantitative analysis of olefins in etherification processes. The current state-of-the-art GC methods employing highly specific long single capillary columns such as Petrocol-DH are being used for the analysis of gasoline-range hydrocarbons. However, the method needs many standard reference samples of respective components in a complex mixture of hydrocarbons, which limits the scope of the analytical method. The alternative approach followed by this investigation is based on the reactive method of the analysis of olefins in FCC light gasoline by subjecting them to hydrogenation and estimating the olefinic content by GC comparing the gas chromatograms of the original feed and hydrogenated product using a Petrocol-DH column. A decrease in the quantity and disappearances of the peaks are assumed as olefins, and their number and total composition is calculated. In this study the bromine number method is used to estimate the olefinic content for a comparison of results with the adopted proposed methodology. The adopted methodology quantitates olefinic content in FCC light gasoline, which is comparable with reported literature values and the bromine number method. With the availability of standard reference samples of some important major reactive olefins, the adopted methodology can also give component-wise analysis as well as total olefinic content in a single step in processes such as etherification. The methodology can be also useful in reactions in which the conversion of total olefinic content is needed such as hydration, esterification, and alkylation of olefins in a complex mixture of hydrocarbons apart from the etherification of olefins in FCC gasoline.  相似文献   

19.
FCC汽油低温改质过程的烯烃转化及催化剂积炭   总被引:3,自引:3,他引:0  
利用微反-色谱联合实验装置和连续式小型提升管催化裂化实验装置研究了催化裂化汽油低温改质过程中烯烃转化和催化剂积炭的过程和规律。通过对模型化合物和催化裂化汽油改质过程中催化剂活性、催化裂化汽油窄馏分、反应温度、剂油比和反应时间对烯烃转化和催化剂积炭的研究表明,大部分烯烃转化和催化剂积炭的反应发生在油剂接触极短的反应时间内,并随着催化剂活性、反应物活性、剂油比和反应温度的提高而增加。在油剂接触后很长的反应时间内,生焦量、积炭速率和烯烃的转化程度都很小,烯烃转化损失率降低,因此,催化裂化汽油在低温改质的条件下可以通过延长反应时间来提高烯烃的转化率。因此,催化裂化汽油改质的最佳工艺条件为,390℃~440℃,剂油比6,催化剂活性61~65,长反应时间,轻馏分进料。  相似文献   

20.
The keto-enol tautomerism is studied using an approximative HF method outlined in the appendix. The following results are obtained: (1) The experimentally observed alternance of G in acyclic monoketones could not be reproduced. (2) The stabilization of C=C double bonds, especially of conjugated double bonds, by CH3- or -CH2- groups is responsible for the observed difference between acyclic and cyclic 1.2-diketones, e.g. for the different enol content of diacetyl and cyclopentane-1.2-dione. (3) The enols of 1.2-diketones contain a hydrogen bond which differs from the hydrogen bond in enols of 1.3-diketones. (4) A system of two conjugated C=O double bonds is not favoured compared to a system of two C=O bonds which are separated by one (or more) -CH2- group. (5) 5-ring enols with a C=C double bond in the ring are more stable than one would expect by an energy estimation from acyclic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号