首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质衍生物乙酰丙酸是生物质转化过程中重要的平台分子,对其进行催化加氢可以得到高附加值的产物,是连接生物质转化和石油化工的重要途径。本实验研究了无溶剂微波辅助热解法绿色制备负载型钌基催化剂,以Ru3(CO)12为金属前体,碳纳米管、椰壳活性炭和活性氧化铝为催化剂载体,该制备方法简单易操作,环保高效低能耗,不使用溶剂,避免了杂质的引入和对催化剂的污染,是一种新型负载型贵金属催化剂的制备方法。同样采取传统浸渍法制备Ru/γ-Al2O3-IM。在乙酰丙酸水相催化加氢反应中的催化活性顺序为Ru/AC > Ru/CNT ≈ Ru/FCNT > Ru/γ-Al2O3-MW ≈ Ru/γ-Al2O3-IM。比较不同反应溶液水、甲醇、乙醇、苯甲醚、环己烷和丙酮等对于乙酰丙酸催化加氢反应的影响,并通过考察反应温度、反应压力和反应物初始浓度等因素对加氢反应的影响,确定最佳实验条件为:反应温度为90℃,反应压力2.0 MPa,适宜反应物浓度为0.10 g/mL,产品GVL收率大于99%。  相似文献   

2.
近年来,柴油发动机产生的废气污染己成为一个严重问题,环境法规对燃油中的硫含量限制越来越严格.因此,开发高效的深度加氢脱硫催化剂成为当今的热门课题之一.在柴油馏分中,由于存在空间位阻作用,二苯并噻吩(DBT)及其烷基取代的衍生物是最难脱除的.传统的加氢脱硫(HDS)催化剂通常是将活性金属担载在γ-Al_2O_3上.近年来,介孔材料如MCM-41,SBA-15,HMS,KIT-1和KIT-6等也被用作加氢脱硫催化剂载体,其大的比表面积有利于活性组分分散,大的规则孔径有利于反应物和产物扩散.其中,KIT-1介孔分子筛具有三维短蠕虫状介孔结构和大的比表面积,其酸性和水热稳定性都高于MCM-41.然而,由于无定形的孔壁使得介孔分子筛的酸性和水热稳定性较差,限制了其在石油化工领域的应用.而介微孔复合分子筛兼具了微孔分子筛酸性强、水热稳定性好和介孔分子筛的孔道优势,因此一经出现就引起了研究者广泛关注.有研究认为,增加载体酸性有利于加氢及促进C-S键氢解反应.载体中的微孔可高效吸附氢分子,降低HDS过程所需的温度和压力,实现温和条件下燃油超深度脱硫.目前,已有研究者将Y-MCM-41,介孔ZSM-5及Beta-KIT-6等多级孔分子筛用作催化剂载体,并进行了加氢脱硫性能研究,取得了良好效果.我们曾利用双模板剂一步晶化法水热合成了介微孔复合分子筛ZK-1.该分子筛既具有与KIT-1相似的短蠕虫状三维介孔孔道,又具有ZSM-5的微孔结构.其介孔孔径为2.7 nm,微孔孔径为0.6 nm.该分子筛具有良好的水热稳定性和较高的酸性.本文在上述研究基础上,以不同硅铝比的ZK-1为载体通过过量浸渍法担载Co,Mo活性组分制备了CoMo/ZK-1(Si/Al=30)和CoMo/ZK-1(Si/Al=40)催化剂,并以相同方法制备了CoMo/γ-Al_2O_3,CoMo/AlKIT-1,CoMo/ZSM-5和CoMo/Mix(等量的ZSM-5和AlKIT-1混合物)催化剂作为对比.催化剂的N_2吸附和NH_3程序升温脱附表征结果表明,CoMo/ZK-1具有高于其他催化剂的比表面积(约700 m~2/g)和介微孔结构,介孔孔径和微孔孔径分别为2.3 nm和0.6-1 nm.CoMo/ZK-1的酸量大于相同硅铝比的CoMo/AlKIT-1,这是由于ZK-1的介孔孔壁上含有沸石结构单元.通过H_2程序升温还原表征可知,CoMo/ZK-1的高温氢耗峰面积较CoMo/γ-Al_2O_3和CoMo/ZSM-5相比明显减小,表明在CoMo/ZK-1上难还原的组分数量减少,载体与金属之间的相互作用减弱,这有利于金属组分的还原和硫化.紫外-可见漫反射光谱表征结果表明,在ZSM-5表面形成了大量的聚合态氧化钼物种,这是由于载体表面积小,金属组分分散不均匀.Co_2AlO_4或Co_2SiO_4相的出现是由于载体与金属间存在较强的相互作用.以ZK-1和AlKIT-1为载体的催化剂则避免了该情况的发生.从高分辨透射电镜照片可知,MoS_2在ZK-1表面分散很均匀,其堆垛层数(2.5-2.7层)和片晶长度(3.9-4.0 nm)都达到较理想的数值,有利于形成更多的Co-Mo-S(Ⅱ)活性相.以二苯并噻吩为模型化合物,采用固定床反应器考察了上述6种催化剂的加氢脱硫活性.催化剂的脱硫率从高到低依次为:CoMo/ZK-1(40)CoMo/ZK-1(30)CoMo/γ-Al_2O_3CoMo/ZSM-5CoMo/MixCoMo/AlKIT-1.在较温和的反应条件(320℃,3MPa,WHSV=5h~(-1))下,CoMo/ZK-1对DBT的脱硫率达到93%以上.其原因主要是:(1)ZK-1的大比表面积使Co,Mo活性组分高度分散在载体表面;(2)载体与金属之间较适中的相互作用有利于活性组分的还原与硫化;(3)ZK-1含有的沸石结构单元使其比AlKIT-1具有更多的酸中心,有利于提高HDS反应活性.  相似文献   

3.
聚氯乙烯(PVC)广泛用于建材、电器、日常用具等各个领域,全球使用量在高分子材料中位居第二,其中有70%左右的产能来自中国.基于我国"富煤、贫油、少气"的资源特征,以汞催化剂催化的乙炔氢氯化生产氯乙烯单体的工艺在我国占主导地位.随着环保需求的提高和2017年8月国际限汞公约在中国正式生效,无汞催化剂的开发迫在眉睫.在无汞催化剂中,钌催化剂制备成本低,具有优异的乙炔氢氯化性能,是非常有竞争潜力的无汞催化剂体系之一.由于乙炔氢氯化反应是路易斯酸催化的反应,无论是汞催化剂还是非汞体系的金属催化剂的活性组分均为氯化物.如果活性中心的酸性太强,会引起乙炔的裂解或聚合造成催化剂积炭失活.因此对负载氯化物的酸性中心结构调控是研发的重点.本文通过配体(硫脲、菲咯啉和L-乳酸)与钌配位来调控钌催化剂的电子结构,研究催化剂活性中心的电子结构对催化剂活性及稳定性的影响.采用氮气吸附、X射线衍射、高分辨透射电镜等对配体修饰的Ru/C催化剂结构进行了表征,结果显示,催化剂的比表面积没有明显下降,且没有发现堵孔现象,也未检测到钌纳米粒子的形成,说明钌物种高度分散.其中以硫脲为配体制备的Ru-Thi/AC催化剂在乙...  相似文献   

4.
共聚物配位的钌催化剂及其催化加氢性能研究   总被引:1,自引:0,他引:1  
在工业中,催化加氢反应由于有重要的应用价值而得到广泛研究,通常这类催化剂以无机材料为活性金属的载体,如活性炭、二氧化硅及一些无机盐类等,有一些研究曾取得了很好的效果[1].然而,这类催化剂存在着普遍的弱点,如:负载于载体表面的活性金属极易形成金属簇从而使催化剂的活性中心减少;载体的结构(孔径、比表面、机械强度等)与性质(与选择反应体系的亲合性)不易改造而限制了上述催化剂的使用效果等.选择含配位原子的高聚物为配体,通过配位的方式使金属均匀地分布在载体的表面,是克服该类催化剂上述弱点的途径之一,有人在这方面进行过一系列的尝试[2~5]. 本文所述的钌配合物催化剂用2-乙烯吡啶(V)和甲基丙烯酸乙二醇双酯(M)的交联共聚物小球为配体,通过配位,还原制成PVMRu催化剂,并对其结构与催化加氢性能进行了研究.  相似文献   

5.
通过液相化学还原法制备了炭载Ir-Co(Ir-Co/C)催化剂。 X射线衍射测试表明,Co原子进入了金属Ir的晶格中,形成了Ir-Co合金,并导致了Ir晶格收缩。 透射电子显微镜观察表明,Ir-Co纳米颗粒均匀分散在炭载体表面,没有出现Ir/C催化剂中金属Ir严重团聚的现象。 电化学测试表明,与炭载Ir(Ir/C)催化剂相比,NH3在Ir-Co/C催化剂电极上氧化的起始电位负移,峰电流密度增大,增加了检测灵敏度和降低了检出限,表明Ir-Co/C催化剂对NH3氧化的电催化性能明显优于Ir/C催化剂。 Ir-Co/C催化剂在电化学氨气传感器中有良好的应用前景。  相似文献   

6.
采用水热法合成了含有89%{101}晶面的TiO_2纳米锭(TiO_2-101)和77%{001}晶面的TiO_2纳米片(TiO_2-001),将其用作载体来制备担载钯催化剂;研究了上述制备的TiO_2纳米材料对Pd/TiO_2-101和Pd/TiO_2-001催化剂用于乙炔选择加氢制聚合级乙烯催化性能的影响。结果表明,Pd/TiO_2-101催化剂表现出更好的乙炔转化率和乙烯收率。通过氢气程序升温脱附(H_2-TPD)、氢气程序升温还原(H_2-TPR)、透射电子显微镜(TEM)、CO化学吸附、X射线光电子能谱(XPS)和热重分析仪(TGA)等对催化剂进行了结构表征和分析。TEM和CO化学吸附结果表明,Pd纳米颗粒(NPs)在TiO_2-101载体上有较小的颗粒尺寸(1.53 nm)和较高的分散度(15.95%);而Pd纳米颗粒在TiO_2-001载体上的颗粒尺寸是4.36 nm和9.06%的分散度。Pd/TiO_2-101催化剂上较小的Pd颗粒尺寸及其较高的分散度使催化剂具有更多的反应活性位点,这促进了其反应的催化活性。  相似文献   

7.
The functionalized MCM-41 mesoporous bound ruthenium complex was synthesized and characterized usingelemental analysis,atomic absorption spectrophotometer,BET,XRD and FTIR.Hydrogenation of carbon dioxide toformic acid was investigated over these catalysts under supercritical CO_2 condition.The effect of reactant gas par-tial pressure,supports,solvents and ligands on the synthesis of formic acid was studied.These factors could influ-ence the catalyst activity,stability and reuse performance greatly and no byproduct was detected.These promisingcatalysts also offered the industrial advantages such as easy separation.  相似文献   

8.
采用沉积-沉淀法制备了TiO_2负载的Au-Ir和Au-Ru催化剂,用于乙酰丙酸加氢制γ-戊内酯反应,并与相应的单金属催化剂性能进行了比较.有趣的是,Ir/TiO_2中添加Au抑制了催化剂活性,而添加Ru则表现出正效应的协同作用.这两个催化剂均在H_2中还原,使得M~0–Au~0间相互作用增强.结合以前的密度泛函理论计算和催化反应结果,我们认为,Au-Ir/TiO_2催化剂活性低于Ir/TiO_2催化剂是由于Au影响了Ir原子的氧化还原过程.  相似文献   

9.
炭载金属纳米催化剂广泛应用于精细化学品加氢反应及燃料电池等许多领域.炭载体因具有较高的表面积、易于调控的表面化学官能团以及特有的耐酸耐碱等性质而经常用作负载型金属催化剂的载体.但是相对于氧化物载体,炭载体表面较为惰性,与金属纳米粒子的相互作用较弱,采用后引入金属前体,如沉淀-沉积法和浸渍法等方法制备的催化剂,在液相和高温反应条件下,金属纳米粒子易流失和烧结.因此制备高稳定性的炭负载金属纳米催化剂仍是多相催化剂制备领域的一个重要课题.随着新型炭材料的出现及纳米孔材料制备科学的发展,极大丰富和推动了炭载金属催化剂制备方法的发展.近年来,通过炭热还原法即在制备中孔炭的过程中引入金属前体,一步制备炭载金属催化剂已经成为炭载金属催化剂的一个新的制备方法.此法制备的催化剂通常具有金属纳米粒子分散均匀、炭和金属活性中心之间的作用力强、热稳定性好、炭载体对负载金属纳米粒子具有限域作用等诸多优点,而且在诸多催化反应中具有优异的催化性能.例如本课题组曾以RuCl_3/SBA-15为硬模板,采用原位碳热还原法制备了Ru-OMC催化剂,它在液相苯环加氢、合成氨及费托合成反应中均具有优异的催化性能及稳定性,但是对于中孔炭中均匀分散的钌纳米颗粒形成的机理尚不清楚.基于此,本文采用原位的红外光谱结合热重表征技术对sucrose-RuCl_3/SBA-15炭化过程钌物种的形成过程及机理进行了研究,探讨了蔗糖在炭化过程中对高分散钌纳米颗粒形成过程的稳定机制.研究发现,尽管经历了高达850 oC的高温炭热处理,所得Ru-OMC催化剂中钌纳米粒子仍然可以均匀分散,钌粒径在1-2 nm之间.同时,由于这种方法中钌前体预先负载在SBA-15载体表面,在炭化过程中,钌纳米粒子可以均匀地分散在模板氧化硅和形成的炭骨架之间的界面上,去除氧化硅模板后,钌纳米粒子可以更多的暴露在中孔炭的孔道内侧,因而具备更好的催化剂性能.通过对sucrose-RuCl_3/SBA-15炭化过程中原位红外光谱表征发现,Ru~(3+)在炭化过程中逐步被还原,并和具有含氧官能团的炭前体形成类金属羰基配合物Ru(CO)x.这种配合物的生成可以有效抑制钌纳米粒子在热处理过程的迁移乃至长大,因而对得到均匀分散的钌纳米粒子具有至关重要的作用.同时Ru(CO)_x周围刚性的氧化硅模板和碳骨架可以有效地防止钌纳米粒子在高温处理过程中烧结和团聚.对sucrose-RuCl_3/SBA-15炭化中间体的X射线光电子能谱表征进一步证明了Ru~(3+)在350 oC之前即可被还原,钌的3p轨道结合能发生了位移,说明钌和炭载体之间具有较强的相互作用.该结果可为炭载贵金属催化剂的调控制备及高活性纳米催化剂的形成机理研究提供一定的参考.  相似文献   

10.
以炭包覆A12O3(CCA)为载体,采用等体积浸渍法制备了17%Ni/CCA催化剂,采用热重-差示量热扫描、扫描电镜、X射线光电子能谱、N2物理吸附、H2程序升温还原和X射线衍射等手段对样品进行了表征,并用于粗1,4-丁二醇加氢反应中.结果表明,炭的引入显著改变了Al2O3的表面性质、负载Ni的存在形态以及金属.载体间...  相似文献   

11.
在低碱度下采用共沉淀法成功制备了非负载型Ru-Zn催化剂,用于苯选择加氢制环己烯反应.固定氢氧化钠沉淀剂的量,考察了不同氯化锌加入量对催化剂结构和催化性能的影响,采用N2吸附、X射线衍射和程序升温还原等手段对催化剂进行了表征.同时考察了选用具有最佳锌含量的Ru-Zn催化剂时搅拌速度和硫酸锌添加剂等对催化反应性能的影响,最后考察了催化剂多次使用时的反应性能.研究表明,Zn含量16.7%(质量分数)的Ru-Zn催化剂具有最佳的催化性能;在Zn SO4水溶液(0.45 mol/L)中,优化反应条件(哈氏合金釜,1200 r/min,150 oC,H2压5 MPa)下反应45 min,苯转化率57%时环己烯选择性可达80%(收率超过45%).钌催化剂中Zn O晶体对于环己烯选择性达到80%非常重要.催化剂回收循环反应5次时反应性能基本不变,表明低碱度下制备的催化剂具有良好的稳定性,显示了工业化应用前景.  相似文献   

12.
利用乙醇-水二元体系制备含质量分数为30%Ir的碳载Ir(Ir/C)催化剂.X射线衍射(XRD)谱和电化学测试分别表明,该催化剂Ir粒子的平均粒径约为2.2 nm.在NaC lO4电解液中,Ir/C催化剂对氨氧化的电催化活性与纯Ir催化剂的相似,但稳定性有明显增加.同时,NH3氧化的电流密度与NH3浓度呈现良好的线性关系,有望在定电位电解型NH3传感器中得到应用.  相似文献   

13.
钌钛复合氧化物及其载铂催化剂的制备与表征   总被引:1,自引:0,他引:1  
以TiN纳米粉体和RuCl3为前驱体,采用浸渍热分解法合成了Ru0.1Ti0.9O2纳米粉体,并以其为载体利用固相反应制备了Pt/Ru0.1Ti0.9O2催化剂.通过X射线衍射和透射电镜观察到RuO2和TiO2之间形成了金红石相的固溶体,Pt被均匀地担载于Ru0.1Ti0.9O2表面.在0.5 mol/LH2SO4溶液中的极化曲线测试发现担载Pt与Ru0.1Ti0.9O2具有协同作用,因而具有优异的析氢、析氧电催化性能.质子交换膜燃料电池测试初步表明,Pt/Ru0.1Ti0.9O2具有高的氧阴极还原反应催化活性,进一步的反极实验证明其具有比Pt/C更高的稳定性.  相似文献   

14.
聚合物担载胶态钯催化剂的制备及其催化加氢性能研究   总被引:1,自引:0,他引:1  
合成了一系列不溶性交联聚合物担载的胶态钯催化剂;用红外光谱、X射线衍射分析、扫描电镜等对催化剂进行了表征。用这些催化剂在80~100℃、氢压196.133×10~4Pa、苯-无水乙醇中进行了环十二碳三烯等不饱和化合物的催化加氢反应。考察了催化剂的活性、选择性、重复使用性能及反应条件对催化剂性能的影响。  相似文献   

15.
以ZrO(NO3)2·2H2O和Fe(NO3)3·9H2O为原料,采用微波水热法制备了不同Fe2O3/ZrO2物质的量比的Fe-Zr催化剂,并经K改性,研究了其催化CO加氢一步法合成低碳烯烃性能。采用XRD、SEM、TEM和N2吸附-脱附等手段对其物相、形貌和比表面积等进行了表征。结果表明,与共沉淀法相比,微波水热制备的Fe-Zr催化剂颗粒粒径均一,具有相对较小的比表面积和较大的孔径;在CO加氢反应中,Zr助剂的添加显著改善了产物分布,Fe、Zr间适宜的相互作用和相对较大的孔径,有利于抑制CH4的生成,提高烯烃选择性。随着Fe2O3/ZrO2物质的量比的降低,Fe、Zr间相互作用逐渐增强,烯烃选择性和收率先增加后降低。当Fe2O3/ZrO2物质的量比为75∶25时,在340℃、1.5 MPa、1 000 h-1和H2/CO物质的量比为2的条件下,烯烷比(O/P)达4.86,总烯烃收率达62.57 g/m3。  相似文献   

16.
以ZrO(NO32·2H2O和Fe(NO33·9H2O为原料,采用微波水热法制备了不同Fe2O3/ZrO2物质的量比的Fe-Zr催化剂,并经K改性,研究了其催化CO加氢一步法合成低碳烯烃性能。采用XRD、SEM、TEM和N2吸附-脱附等手段对其物相、形貌和比表面积等进行了表征。结果表明,与共沉淀法相比,微波水热制备的Fe-Zr催化剂颗粒粒径均一,具有相对较小的比表面积和较大的孔径;在CO加氢反应中,Zr助剂的添加显著改善了产物分布,Fe、Zr间适宜的相互作用和相对较大的孔径,有利于抑制CH4的生成,提高烯烃选择性。随着Fe2O3/ZrO2物质的量比的降低,Fe、Zr间相互作用逐渐增强,烯烃选择性和收率先增加后降低。当Fe2O3/ZrO2物质的量比为75:25时,在340 ℃、1.5 MPa、1 000 h-1和H2/CO物质的量比为2的条件下,烯烷比(O/P)达4.86,总烯烃收率达62.57 g/m3。  相似文献   

17.
炭担载的Mo和CoMo加氢脱硫催化剂   总被引:11,自引:0,他引:11  
用仲钼酸铵和酸钴水溶液浸渍方法将MoO3和CoO担载在少在性炭担体上,制成Mo/C和CoMo/C催化剂。运用DTA,XPS,FT-LRS等手段考察了MnO3在活性炭担体表面的分散状态及H2还原能力随MoO3含量的变化,并在中压固定床反应装置上测定了催化剂的噻吩加氢脱硫和环己烯加氢反应活性。  相似文献   

18.
单原子催化剂以最大化的金属原子利用率和较好的选择性,成为近年来催化研究领域的热点,但在选择性加氢应用中常常由于缺电子的金属中心对底物/氢气的活化能力较弱导致其催化活性较低.因此,如何保持最大原子利用率和高选择性的同时,进一步提高活性对于升级单原子催化剂具有重要意义.本文通过浸渍-再分散策略,制备出原子分散的Ru-P-Ru催化剂.球差扫描透射电镜、X射线吸收精细结构谱等表征和理论计算结果表明,其金属活性位点为P桥连的Ru-P-Ru结构.制备了不同还原温度的对照催化剂,结合X射线光电子能谱(XPS)和原位程序升温还原联用质谱(H2-TPR-MS)对催化剂的形成过程进行了详细研究.XPS结果表明,随着还原温度的升高, P掺杂介孔碳表面的高氧化态P物种被还原为具有强配位能力的C-P物种,为金属的再分散提供了合适的配位环境,同时, H2-TPR-MS检测到载体表面部分P物种被还原为具有强Lewis碱性的PH3, PH3与金属原子通过强Lewis酸碱相互作用可促进金属的再分散形成Ru-P-Ru结构.在邻苯二甲酸...  相似文献   

19.
催化剂被广泛应用于各种化学品的生产,从原子尺度了解整个催化反应体系有利于合理设计新型催化剂.参与气固相反应的催化剂主要有贵金属催化剂和过渡金属催化剂.近年来,Ru基催化剂由于在低温低压下表现出良好的催化活性而广泛应用于一些气固相反应.本文对Ru的基本性质、氧化行为以及Ru基催化剂的理论研究进行综述.介绍了钌基催化剂参与的气固相反应,包括挥发性有机物的催化氧化、一氧化碳优先氧化(PROX)、氨合成、氯化氢氧化以及甲烷部分氧化,分析了催化性能与理化性质之间的构效关系,提出了钌基催化剂在相关反应中存在的问题以及未来发展趋势.Ru具有多种氧化态,在Ru基催化剂参与的气固相反应中,金属Ru和/或RuO_2被认为是活性物种,通常反应温度在400oC以下.Ru(0001)晶面在O_2存在条件下,随着氧气含量的不同会从中间态过渡到氧化态,实验证明该晶面属于RuO_2.理论研究证实了在反应过程中RuO_2的存在,并提出了核壳结构,对于其它气固相反应的机理研究有一定启发.挥发性有机物(VOC)的催化氧化主要集中烷烃、烯烃、芳烃以及卤代烃的催化氧化,催化剂的理化性质包括颗粒粒径、价态和晶体结构等对催化活性有很大影响,并且Ru基催化剂对卤代烃的催化氧化表现出良好的抗卤性,同时多卤代副产物低于其它贵金属体系.Ru基催化剂在低温条件下对PROX具有高的活性和选择性,并且可以有效抑制H_2氧化、CO甲烷化和CO_2甲烷化等副反应发生.氨合成的难点在于N≡N具有很强的解离能,许多研究表明,氨合成使用的Ru基催化剂的催化性能与载体性质密切相关,Ru与载体之间强的相互作用使得电子可以迅速地从载体转移到Ru颗粒上,掺杂其它有效元素可能会提供更多的氧空位和有效防止高温焙烧导致催化剂烧结.对于HCl氧化虽然研究较少,但是Over等人对HCl氧化机理进行了深入研究,并且日本住友化工设计的Ru基催化剂已经商业化.Ru基催化剂可以有效降低甲烷部分氧化的反应温度和压力,并具有高的选择性和稳定性,避免副产物生成.现有催化系统以及新型催化剂开发仍面临诸多挑战,例如:对于单一VOC氧化过程和多元VOCs催化氧化的机理和动力学需要进一步研究;对于氨合成需要寻求具有高电导率的载体,从而将电子快速转移到Ru颗粒表面,使得氨合成在更低温度下进行;为了避免副产物生成,需确保新型Ru基催化剂上PROX和甲烷部分氧化在低温低压条件下进行;Ru基催化剂理化性质对活性的影响以及失活等问题需要进一步研究.  相似文献   

20.
采用化学还原法制备了不同Ni/Co原子比的Ni-Co-W-B非晶态催化剂,以苯酚为探针,研究了其加氢脱氧性能.结果表明,新鲜的Ni-Co-W-B催化剂具有非晶态结构,其中Ni0和B0之间存在电子转移,且随着Co含量的增加,催化剂的热稳定性逐渐提高,表面Ni0含量减少.该催化剂上苯酚加氢脱氧反应按照先加氢再脱氧的方式进行...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号