首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
合成兼具催化、吸附性能的复合催化剂是实现CO_2吸附强化CH_4/H_2O重整制氢过程的关键。研究采用共沉淀法制备了一系列具有类水滑石结构前驱体的Ni/Ca O-Al_2O_3复合催化剂,考察了制备过程中Ca/Al物质的量比对复合催化剂结构及性能的影响。结果表明,Ca/Al物质的量比可调控活性组分Ni与载体之间的相互作用力,进而调变复合催化剂的比表面积和活性组分Ni的分散度。当Ca/Al物质的量比为3时,Ni与载体之间相互作用力适宜,复合催化剂具有最大的比表面积(12.9 m~2/g)和最高的Ni分散度(1.07%);该复合催化剂在CO_2吸附强化CH_4/H_2O重整制氢过程中可得到95%的H_2浓度和88%的CH_4转化率,循环10次后,H2浓度仍能保持在93%以上。  相似文献   

2.
采用共沉淀法制备了一系列具有类水滑石结构前驱体的Ni/CaO-Al2O3复合催化剂,考察了制备过程中焙烧温度对复合催化剂结构及性能的影响。结果表明,焙烧温度可调控活性组分Ni与载体之间的相互作用力,进而调变复合催化剂的比表面积、活性组分Ni的颗粒粒径。当焙烧温度为700 ℃时,Ni与载体之间相互作用力适宜,复合催化剂具有最大的比表面积(21.42 m2/g)和最小的Ni颗粒粒径(19.51 nm);该复合催化剂在CO2吸附强化CH4/H2O重整制氢过程中可得到98.31%的H2浓度和94.87%的CH4转化率,循环10次后,H2浓度仍能保持在97.35%以上。这是因为大的比表面积为反应提供了更多的活性位点,利于CO2吸附过程的强化,而小的Ni颗粒粒径提高了复合催化剂的抗烧结能力。  相似文献   

3.
采用浸渍法制备了Ni/SSZ-13催化剂,并研究了催化剂的CO_2甲烷化反应性能。通过N_2物理吸附-脱附、X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱等表征分析方法对催化剂的质构特性及物理化学性质进行了研究。结果表明,Ni/SSZ-13催化剂在250℃开始表现出CO_2甲烷化催化活性;在450℃,Ni/SSZ-13表现出最佳的催化反应活性,CO_2转化率和CH_4选择性分别为70%和95%。SSZ-13载体表现出长方体结构,孔结构主要为微孔,并含有部分介孔,为镍物质的分散提供较大的比表面积。煅烧后的催化剂在500℃的还原过程中,NiO被H_2还原成金属Ni,金属Ni是CO_2甲烷化的主要活性组分。  相似文献   

4.
以三种不同铝源采用溶液燃烧法制备了系列Ni/Al_2O_3催化剂,通过XRD、H_2-TPR、NH_3-TPD、N_2吸附-脱附、TGDTG和TPH等分析方法对反应前后催化剂进行了表征,研究了铝源对Ni/Al_2O_3催化剂结构、表面性质及其CO_2-CH_4重整性能的影响。结果表明,以Al(NO_3)_3·9H_2O为铝源制备的NiNO-AlNO催化剂比表面积较大,达102 m~2/g;高温还原峰面积大,峰型更为弥散;且载体Al_2_O_3具有一定的结晶性。而以Al_2(SO_4)_3·18H_2O和AlCl_3·6H_2O为铝源制备的NiNO-AlSO和NiNO-AlCl催化剂,其载体以无定型Al_2O_3存在,活性组分Ni晶粒粒径大、分散性差,还原峰面积较小,与载体的相互作用较弱。其中,由于硫酸铝较为稳定,需要在更高温度下才能转化为Al_2O_3,且所制备NiNO-AlSO催化剂中残留有含硫物质,使得其表面酸性较强。评价结果显示,NiNO-AlNO催化剂活性较高,稳定性好,CH4转化率为31.21%,CO_2转化率为48.97%。积炭分析结果发现,NiNO-AlNO催化剂表面积炭量最少,沉积炭主要以无定型态存在,具有良好的抗积炭性能。  相似文献   

5.
制备因素对Ni/C催化剂上乙醇气相羰基化反应性能的影响   总被引:1,自引:1,他引:0  
采用等体积浸渍法制备负载型Ni/C催化剂,考察了制备因素对乙醇直接气相羰基化反应的影响。实验结果表明,催化剂最佳制备因素为,Ni的质量分数为5%,活性炭采用水洗预处理,控制浸渍液的pH值为8.0~9.0,焙烧温度为450℃,H2还原温度为400℃。采用上述参数制备的Ni/C催化剂,其乙醇转化率和丙酸选择性分别为96.14%和95.71%。利用N2物理吸附法研究载体预处理对催化剂比表面积、孔容及孔径的影响和X射线衍射法(XRD)研究了活性组分在惰性气氛中焙烧时的分散状况。  相似文献   

6.
采用软模板法一步合成了一系列铁同晶取代的多级孔Beta分子筛(nFe-HBeta,n=Fe/Al),并通过等体积浸渍法制备出系列Ni基催化剂(10Ni/nFe-HBeta)。结果表明,系列nFe-HBeta均为结晶度高、孔道结构丰富的片状结构。异质铁原子的引入在降低介孔相有序度的同时,促使沸石颗粒粒径下降,中强酸性位点数量显著减少。对于10Ni/nFe-HBeta催化剂而言,骨架铁与NiO之间存在协同作用,可增强活性组分Ni与载体间的作用力,提高活性金属Ni的分散度,降低NiO颗粒粒径。在乙醇水蒸气重整催化反应中,铁元素的引入可规避酸性位以抑制乙醇脱水反应,同时加强CO和CH_4的水蒸气重整反应,有效提高H_2选择性。其中,10Ni/0.15Fe-HBeta催化剂在500℃时,H_2选择性高达72.15%,C_2H_5OH转化率为99.6%,反应12 h后的积炭量仅为4.3%。  相似文献   

7.
为提高镍基催化剂的干法重整活性,采用蒸发诱导自组装法制备了PA0.01,PA0.02,PA0.03和PA0.05系列Al_2O_3载体,并以水热沉积法制备了相应的4种催化剂,在800℃考察了其在CO_2-CH_4重整反应中的催化性能,并对载体和催化剂进行了表征分析.结果表明,P123与异丙醇铝(ISO-AL)摩尔比为0.02时,所制备的PA0.02载体比表面积最大,为320.12 m~2/g,相应PAC0.02催化剂比表面积高达280.15 m~2/g,可为反应提供较多的活性位,PAC0.02催化剂的CH_4和CO_2转化率最高,分别达到91.92%和94.69%;该催化剂具有较多的Ni Al_2O_4尖晶石结构,其还原峰面积占总还原峰面积的82%,还原后可获得更多的稳定的活性组分Ni.PAC0.02稳定性好,反应154 h后CH_4转化率才降至50%以下.  相似文献   

8.
通过柠檬酸辅助固相研磨法制备铜基催化剂,采用XRD、TPR、TG-DSC、SEM、BET、TEM、XPS、CO_2-TPD等手段对催化剂性能进行表征.结果表明室温固相研磨的前驱体在惰性气体N_2中焙烧使体系中的CuO绝大部分被原位还原成Cu~0,不需外加H_2还原,直接制得了C/I-Cu/ZnO催化剂,催化剂具有中孔.利用高压固定床连续反应装置对催化剂活性进行了评价,结果表明,柠檬酸用量、前驱体焙烧温度、焙烧升温速率等条件对催化剂活性产生影响,当C_6H_8O_7/(Cu+Zn)摩尔比为1.2/1并Cu/Zn摩尔比1/1,前驱体在N_2中以3 K·min~(-1)升温速率于623 K焙烧3 h,制得的C/I-Cu/ZnO催化剂比表面积最大,Cu~0粒径最小,在CO_2加氢合成甲醇反应中表现出最佳的活性,CO_2转化率、甲醇选择性和产率分别达到了28.28%、74.29%和21.01%.与外加H_2还原的C/H-Cu/ZnO催化剂相比,原位还原C/I-Cu/ZnO催化剂比表面积较大,Cu~0的粒径较小,活性较高.  相似文献   

9.
近年来,由于大气CO_2浓度增加引起的温室效应正日益威胁着人类的生存与发展,CO_2的捕获与利用是有望解决温室效应和能源危机的有效途径.CO_2催化转化为甲醇成为众多研究者关注的焦点,这是因为甲醇不仅是一种重要的基本化工原料,也是一种洁净的绿色燃料和能源载体.Cu基催化剂广泛应用于CO_2加氢合成甲醇反应,并表现出良好的催化性能.通常,金属催化剂的制备是采用H_2对金属氧化物进行还原.然而,传统的气相还原过程伴随着强烈的热效应,且需要在高温(473-573 K)下进行,会引起表面铜颗粒长大并加速其聚集烧结,使得活性组分利用率下降.近年来,以NaBH_4为还原剂的液相还原法逐渐受到人们的重视,该方法操作简单、快捷且条件可控,反应在低温下进行,放出的热量可在液相环境中迅速得到转移,大大抑制了铜颗粒的聚集.因此,液相还原法可制备出高铜分散度、高活性的催化剂.焙烧温度对铜基催化剂结构和催化性能的影响已得到广泛探究,但这仅限于含二价铜物种催化剂,焙烧温度对含多种铜价态催化剂的影响未见报道.由于液相还原法制备的催化剂含有还原态的铜物种(Cu~0和Cu~+),它们比Cu~(2+)具有更强的流动性,因此在后续的焙烧过程中催化剂更容易发生烧结和聚集.本文采用液相还原法合成了Cu/Zn/Al/Zr催化剂,分别于423,573,723和873 K焙烧后用于CO_2加氢合成甲醇反应,考察了焙烧温度对制备的铜基催化剂结构性质和催化性能的影响,并与传统共沉淀法制备的催化剂进行了对比.结果显示,随着焙烧温度升高,铜物种聚集作用增强,金属铜颗粒尺寸增大,873 K时烧结出现显著增强.由于比表面积随焙烧温度升高而减小,高温度焙烧的催化剂具有小的表面碱性位数目.焙烧温度会影响催化剂中铜物种与其它组分的相互作用,进而影响催化剂的还原.随着焙烧温度的升高,催化剂的还原温度逐渐降低,表面Cu~+/Cu~0的比例先增后减.CO_2加氢活性评价显示,液相还原法制备的催化剂具有更高的催化活性,尤其是甲醇选择性;随着焙烧温度升高,催化剂的CO_2转化率和甲醇选择性先增后减,CZAZ-573催化剂具有最高活性,且在1000 h长周期活性测试中表现稳定.CO_2转化率与催化剂暴露金属铜的比表面积密切相关.相比Cu~0,产物甲醇更容易在Cu~+表面催化生成,催化剂表面的Cu~+/Cu~0比与甲醇选择性的变化规律一致.通过调控焙烧温度可得到高Cu比表面积以及高Cu~+/Cu~0比的催化剂,有利于CO_2加氢生成甲醇.  相似文献   

10.
采用浸渍法制备了一系列MTiO_3(M=Mg、Ca、Sr、Ba)钙钛矿型氧化物负载的Ni催化剂(Ni的负载量为5%,质量分数),通过XRD、氮吸附、H_2-TPR、CO_2-TPD、XPS和TG等技术对催化剂进行了表征,对其甲烷二氧化碳重整反应的催化性能进行了研究。结果表明,M为不同碱土金属时,催化剂上金属载体相互作用、活性组分的表面原子浓度以及催化剂晶格氧的流动性都发生了变化。Ni/CaTiO_3催化剂上金属载体相互作用较强,还原出的活性组分Ni的含量较多,晶格氧流动性较高,因而具有较好的催化性能。SrTiO_3载体颗粒粒径较大,Ni/SrTiO_3催化剂上Ni的分散度不高,金属载体的相互作用较弱,表面Ni原子相对含量较低,晶格氧的流动性较差,其甲烷二氧化碳重整反应活性也最低。  相似文献   

11.
 采用溶胶-凝胶法制备了介孔TiO2-Al2O3复合氧化物载体,考察了载体的焙烧温度对负载型Au-Pd双金属催化剂加氢脱硫性能的影响,并采用X射线衍射、吸附吡啶的程序升温脱附、程序升温还原、红外光谱和N2物理吸附等技术对载体及催化剂进行了表征. 结果表明,不同温度焙烧的TiO2-Al2O3复合载体都具有介孔结构,其中773 K焙烧制得的TiO2-Al2O3复合载体的比表面积和孔容较大, B酸中心较多,以其为载体的Au-Pd 催化剂具有较好的加氢脱硫活性. 表征结果表明, 773 K焙烧制得的Au-Pd/TiO2-Al2O3催化剂中Au-Pd活性组分与载体的相互作用较强,催化剂上形成的AuxPdy合金的晶粒较小且数量较多,催化剂的酸量和活性组分的分散度较大,并且其上进行的加氢脱硫反应的活化能较低,这些因素均有利于催化剂活性的提高.  相似文献   

12.
本文利用等离子体耦合催化剂的方式进行CH_4干重整(Dry Reforming of Methane,DRM),重点考察了反应温度、CO_2/CH_4物质的量比、合成气主要气体组分浓度(N_2、H_2、CO、H_2O)对CH_4转化率及等离子体催化能量效率的影响。结果表明,以La-Ni/γ-Al_2O_3为催化剂,当反应温度450℃,CO_2/CH_4物质的量比为1.0时,CH_4转化率为41.57%;提高CO_2/CH_4物质的量比可提高CH_4转化率,当CO_2/CH_4物质的量比为5.0时,等离子体催化CH_4干重整过程的CH_4转化率可达92.82%。温度和CO_2/CH_4物质的量比对CH_4转化率影响显著,气体组分的变化改变了体系中的激发态粒子,不仅直接影响到CH_4转化率,还影响着催化剂表面积炭。向反应体系中添加N_2、H_2O可提高CH4转化率,并抑制积炭;而添加H_2、CO后CH_4转化率显著降低。研究结果可望为生物质气化合成化工品的工艺开发提供基础数据和参考依据。  相似文献   

13.
采用等体积浸渍法和共沉淀法制备了Ni催化剂,在固定床反应器上考察了Ni负载量、焙烧温度、反应温度等因素对乙二醇低温重整制氢反应活性和选择性的影响。应用X射线衍射、氮物理吸附、H2程序升温还原等技术对负载型Ni催化剂进行了表征。结果表明,共沉淀法制备的Ni/CeO2催化剂具有较小的NiO颗粒与CeO2载体颗粒粒径,催化活性较高。添加少量氧化钴到Ni/CeO2催化剂中可使H2收率达72.6%,EG转化率达93.1%。在CeO2中添加Al2O3能提高负载Ni催化剂的活性,乙二醇转化率达94.0%,H2收率达67.0%;但添加SiO2则使其活性明显变差。  相似文献   

14.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体,采用浸渍法制备了Ni2P/TiO2-Al2O3催化剂,并用X射线衍射(XRD)、N2吸附比表面积(BET)测定、热重-差热分析(TG-DTA)、X射线光电子能谱(XPS)等技术对催化剂的结构和性质进行了表征.催化剂加氢脱硫(HDS)和脱氮(HDN)活性评价在实验室固定床连续反应装置上,以噻吩和吡啶为模型反应物进行.考察了不同载体、Ni2P负载量、标称Ni/P摩尔比、催化剂焙烧温度对Ni2P/TiO2-Al2O3催化剂上同时进行的噻吩加氢脱硫和吡啶加氢脱氮性能的影响.结果表明,TiO2含量为80%(w)的TiO2-Al2O3复合氧化物为载体,Ni2P负载量为30.0%(w),标称Ni/P摩尔比为1/2,催化剂焙烧温度为500℃时,Ni2P/TiO2-Al2O3催化剂加氢脱硫脱氮活性最高.在360℃,3.0MPa,氢油比800(V/V),液时体积空速1.5h-1的条件下,噻吩HDS和吡啶HDN转化率分别为61.32%和64.43%.  相似文献   

15.
常压等离子体还原的Ni/γ-Al2O3催化剂的程序升温脱附研究   总被引:1,自引:0,他引:1  
用程序升温脱附(TPD)手段考察了常规焙烧还原(GR)、焙烧后等离子体还原(PR)、未焙烧等离子体直接还原(PDR)三种方法制备的Ni/-γAl2O3催化剂的H2和CO2的吸附-脱附性能,并用X射线衍射和N2吸附方法进行了表征.结果表明,H2的化学吸附发生在活性组分Ni上,而CO2的化学吸附则主要发生在Al2O3载体的强碱性中心.等离子体还原(PR、PDR)的催化剂对H2和CO2的化学吸附量大大增加,且H2的脱附温度分别降低了55和69℃.以H2的化学吸附量为基础计算得到PR和PDR催化剂的分散度分别为32%和58%,分别是GR催化剂的1.23和2.23倍.等离子体还原的催化剂的典型特征是具有良好的分散性、更多的强碱中心以及较低的H2脱附温度.造成这些特征的原因是等离子体使催化剂在较低的温度和较短的时间内还原,最大程度地保持了载体的比表面积,改善了活性组分的分散度.  相似文献   

16.
采用浸渍法制备了ZrO2-SiO2复合载体和Ni质量分数为6%的Ni/ZrO2-SiO2催化剂,考察了载体制备时浸渍溶液pH值、焙烧温度和催化剂制备时的焙烧温度对Ni/ZrO2-SiO2催化剂煤气甲烷化反应性能的影响。采用X射线衍射、程序升温还原和扫描电子显微镜等方法对催化剂进行了表征。结果表明,载体浸渍溶液pH值为8.0~9.0, 载体焙烧温度为550 ℃,催化剂焙烧温度为450 ℃时,Ni/ZrO2-SiO2催化剂在煤气甲烷化反应中显示了最优的催化性能,CO转化率100%,CO2转化率1.8%,CH4生成速率16.6 mmol/(h·g)。进一步表征发现,制备ZrO2-SiO2复合载体时,增大浸渍溶液的pH值有利于形成粒径较小的亚稳态四方晶相ZrO2,可见四方晶相ZrO2更有利于甲烷化反应;载体焙烧温度会影响到NiO粒径的大小和其在催化剂表面的分散,温度过高和过低都会导致NiO粒径大小的不适宜以及分散性的降低;催化剂焙烧温度过高则会导致NiO与载体间的相互作用减弱,NiO分散性降低。  相似文献   

17.
采用等体积浸渍的方式,在全硅Beta分子筛载体上担载Cu、Ni活性组分,制备出一系列xCuyNi-ABZ多功能乙醇水蒸气重整制氢催化剂。通过XRD、TEM、SEM-EDX以及XPS等多种表征手段,研究催化剂的结构特性、活性组分含量等因素对催化性能的影响,依据反应产物分布,揭示其作用机理。结果表明,以Beta分子筛为载体可促使活性组分以纳米颗粒的形式高度分散于载体表面,并且存在较强的载体-金属作用力。与传统SiO_2为载体催化剂相比,2.5Cu2.5Ni-ABZ催化剂具备良好的乙醇水蒸气重整催化性能,当反应温度为450℃,实现100%的乙醇转化率和67.23%的H_2选择性,且副产物CO(4.14%)、CH_4(5.65%)含量相对较低。这可归因于Cu和Ni活性组分间的高效协同作用,Cu具有良好的乙醇脱氢性能,生成反应中间体乙醛;在反应过程中,乙醛的重整和分解是两个受温度影响的竞争反应,Ni组分利用其较强的C-C键断裂能力,随温度的升高,乙醛重整反应占主导作用,生成目标产物H_2。通过对反应后样品分析表明,2.5Cu2.5Ni-ABZ催化剂具备良好的抗烧结和抗积炭催化性能。  相似文献   

18.
针对催化剂活性组分脱落问题,采用载体预处理和添加硅溶胶的策略来强化活性组分负载,微波单模腔中催化燃烧甲苯以考察催化剂活性,并对牢固负载的催化剂进行表征分析。研究表明,常温下采用10%盐酸溶液对蜂窝状堇青石(CH)载体预处理、硅溶胶添加量与载体吸水量比值为0.125条件下所制备的Cu-Mn-Ce(硅溶胶)/CH催化剂脱落率为0.0129%,明显低于Cu-Mn-Ce/CH催化剂的0.950%。Cu-Mn-Ce(硅溶胶)/CH催化剂具有更小的活性颗粒尺寸、更大的比表面积和更多样的活性晶体,在甲苯进气浓度1000 mg/m3、进气量0.12 m3/h、微波功率200 W和床层温度350℃条件下,催化剂对甲苯的催化燃烧效率和矿化率分别为98.5%和87.9%;连续实验43 h后,催化剂活性保持稳定且活性组分脱落率低(0.0328%)。硅溶胶的添加增强了活性组分与载体之间的相互作用力,生成的硅氧烷化学键提高了活性组分的结合牢固度。  相似文献   

19.
采用浸渍法制备了一系列Ni-Fe/蒙脱土(MMT)催化剂,并应用于乙醇水蒸气重整制氢反应(ESR)。采用X射线衍射(XRD)、N_2吸附脱附分析和H_2-程序升温还原(H_2-TPR)表征手段对催化剂的物理化学性质、还原性能、碳沉积等进行了研究。结果表明,Ni-Fe/MMT催化剂中,Ni、Fe高度分散在载体MMT层间及表面,而且Fe的加入降低了Ni颗粒的粒径,增强了Ni~(2+)与载体的相互作用力。以10Ni5Fe/MMT为催化剂,在反应温度为500℃、水醇比为3∶1、空速为12 h~(-1),反应进行30 h后,乙醇转化率为100%,氢气选择性仍保持72%,副产物CO和CH_4含量明显降低。这是因为催化助剂Fe的引入,一方面,提高了Ni的分散度,使得ESR低温活性较好;另一方面,减小了Ni颗粒粒径,小颗粒的Ni有利于抑制甲烷的生成,并且Fe的加入加强了甲烷重整和水煤气变换反应,提高产物中氢气的选择性。  相似文献   

20.
通过共沉淀法合成了含Ni/Mg/Al的类水滑石,并利用水滑石的"重构性能"将F-引入到水滑石层间。焙烧该类水滑石后得到Ni/Mg/Al/O-F催化剂,采用XRD、SEM、CO2-TPD、H2-TPR、N2吸附-脱附等手段对其结构进行了表征。结果表明,焙烧后的催化剂为方镁石结构,并具有丰富的介孔,Ni/Mg/Al/O-F较之不含F-的复合氧化物Ni/Mg/AlO具有更小的比表面积、颗粒粒径和结晶度,但是碱密度明显增大,并且在甲烷部分氧化(POM)反应中表现出更高的活性和稳定性,反应120h后,活性没有下降。这是因为F-的引入提高了催化剂碱性和活性组分Ni的分散,从而改善了催化剂的抗积炭和烧结能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号