首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以椰壳为原料采用化学活化法制备活性炭,通过改变碱炭比,得到不同比表面积和孔结构的活性炭材料,并进行机理研究.其中,高比表面积产生大量容量;大量介孔为离子快速转移提供通道,有利于提高超电容的倍率性能.以6 mol·L-1的KOH为电解液组装成对称电极的超级电容器,并进行电化学性能测试.制备的AC-4活性炭比表面积为3831 m2·g-1,介孔率42.8;,组装为超级电容器在1A·g-1电流密度下放电比容量达到260F·g-1,100A ·g-1时仍保持216.116 F·g-1,最高功率密度24.5 kW· kg-1,能量密度13.35Wh· kg-1.  相似文献   

2.
采用水热-活化法以葡萄糖为碳源、尿素为氮源合成出高含氮量的多孔晶态碳材料.采用透射电镜、X射线衍射、N2吸附-脱附和X射线光电子能谱对材料的结构进行表征;利用循环伏安、恒流充放电和电化学阻抗对材料进行电容性能的测试.结果表明:合成材料具有强的结晶性、大的比表面积(1567 m2/g)、和高的氮含量(7.97at;).当其做为电极材料应用于超级电容器中时,其展示出良好电化学性能,在1 A/g时,其比电容为258 F/g,要远高于含氮的活性碳(222F/g)和晶态碳(106F/g)的电容;5000次循环后,其比电容保持率为99.98;;在功率密度为500W/kg下其能量密度为10.69 Wh/kg.  相似文献   

3.
近些年,由于制备工艺的不断优化,生物质炭材料作为储能器件(锂离子电池、超级电容器、锂硫电池等)的电极材料得到了快速发展.与此同时,由于存在首次库伦效率低,不可逆容量大,电压滞后,大电流充放电能力弱等问题,大大阻碍了生物质炭材料作为电极材料的应用.而通过杂元素掺杂生物质炭(尤其是杂原子掺杂),可以有效地提高炭材料的润湿性和电子传导性,增加炭材料的缺陷以及活性位点,使其具有优异的电化学性能.本文归纳了杂元素掺杂生物质炭的研究进展,分别对其制备方法,以及在锂离子电池、超级电容器和锂硫电池等能源领域中的应用和前景进行介绍.  相似文献   

4.
张涛  张卫珂 《人工晶体学报》2019,48(12):2265-2269
低污染、高能量的超级电容器是目前研究的重点.本文利用水热法合成了Bi2WO6/CNOs复合材料,并通过改变前驱体的pH值来调整复合材料的形态,在pH值为3和11的条件下合成了花状片层结构和块状结构的复合材料,并将其作为赝电容的电极材料.采用循环伏安法、恒电流充放电法和电化学阻抗法研究了制备的Bi2WO6/CNOs复合材料的电化学性能.结果表明,在电流密度为10 mA/cm2时,以1 mol/L KOH溶液为电解液的条件下,pH=3时花状片层结构的Bi2WO6/CNOs复合材料的比电容为152.7 F/g,大于pH=11时复合材料的比电容.这主要是由于CNOs能均匀分散在Bi2WO6 的片层之间,从而起到良好的支撑和电子传输作用.  相似文献   

5.
以Co(NO3)2·6H2O,CO(NH2)2和活性炭(AC)为原料,利用溶剂热法合成了Co(OH) 2/AC复合电极材料.X射线衍射仪、扫描电子显微镜、傅里叶红外光谱和热重分析显示,产物是约为2 μm无定形的Co(OH)2薄片状粒子与AC颗粒复合.电化学测试表明,在6 mol/L KOH电解液中电流密度为1A·g-1时,电极材料的比电容达301F·g-1,倍率特性良好(164 F·g-1,20 A·g-1);比电容值比AC和Co(OH)2分别提高了89;和35;.复合材料电化学性能提升源自于高导电性活性炭和高赝电容比容量Co(OH)2间的协同作用.  相似文献   

6.
牛丽丽 《人工晶体学报》2020,49(10):1877-1882
本文以过硫酸铵为引发剂,植酸为掺杂酸,在溶液中原位聚合合成了碳纳米管(CNTs)/苯乙烯-丁二烯-苯乙烯(SBS)/聚苯胺(PANI)复合电极材料.通过红外光谱(IR)、扫描电镜(SEM)对电极材料的结构和微观形貌进行了表征.通过循环伏安法(CV)、交流阻抗谱(EIS)、恒电流充放电(GCD)等电化学手段对材料的电化学性能进行了表征.结果表明:与SBS/PANI复合材料相比,CNTs/SBS/PANI复合电极材料具有更高的比电容、循环稳定性和倍率性能.当CNTs的加入量占苯胺单体质量百分比为3;,在扫描速率为5 mV/s时,CNTs/SBS/PANI复合电极材料的比电容最大为356.7 F/g.  相似文献   

7.
以Co(NO3)2·6H2O为原料,在280 ℃下,采用简单的熔盐法合成了亚微米Co3O4.运用X射线衍射(XRD),扫描电子显微境(SEM)对产物的相结构和形貌进行了分析.通过循环伏安法和恒电流充放电法测试了亚微米Co3O4电化学性能.电化学测试结果表明:在6 mol/L KOH溶液中,保温时间为3h时,Co3O4亚微米颗粒的比电容最高,在0.4 A/g充放电电流密度下放电比电容为187 F/g,并且在1 A/g电流密度下循环1000次后比电容保持首次电容的51.4;.  相似文献   

8.
鉴于中空和表面多级结构有助于提升超级电容器电极材料电化学储能性能,以正硅酸四乙酯(TEOS)为硅源,以PVP为助纺剂,运用静电纺丝结合碳热还原技术制备出中空SiC纤维,并采用渗硅技术在SiC纤维表面构筑出球形纳米颗粒的多级结构.研究表明,采用静电纺丝结合碳热还原可以得到具有中空结构、连续性好且结晶程度较高的β-SiC纤维,其比电容为22 F/g.采用渗硅工艺可在β-SiC纤维表面生长球形颗粒多级结构,提升其电化学性能,使其具有较大比电容,为54 F/g.  相似文献   

9.
以乙醇为溶剂,采用溶剂热法制备了三维花状层状双氢氧化物(Layered Double Hydroxides, LDH)与炭黑(Carbon Black, CB)复合的复合材料。采用X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)对样品的结构和形貌进行表征,并通过循环伏安、交流阻抗和恒流充放电研究了材料的电化学性能。结果表明,作为超级电容器电极材料,所制备的NiCo-LDH/CB和NiCo-LDH/CB-D电极在1 A·g-1电流密度下的比电容分别为1 520 F·g-1和2 127 F·g-1,即使在7 A·g-1高电流密度下,其比电容仍可达1 438 F·g-1和2 011 F·g-1,容量保持率为94.6%和94.5%。与单纯的花状NiCo-LDH相比,CB的引入明显提升了材料的电化学性能。  相似文献   

10.
随着化石燃料的加速消耗和能源危机的日益加剧,作为新型储能元件的超级电容器引起了研究人员极大的关注.本文通过水热法制备了生物质衍生多孔碳,并对该材料的微观结构和元素组成进行分析,研究了其作为超级电容器电极材料的电化学性能.结果表明,经过掺氮处理的酸角衍生多孔碳材料其比电容从166 F·g-1提高到了232 F·g-1,说明掺杂能有效提高生物质衍生多孔碳材料的电容性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号