首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In order to describe the influence of cationic polyelectrolytes on flocculation of disperse systems the adsorption of poly (diallyldimethylammonium chloride) (PDADMAC) onto silica, mica and acidic polymer latex was investigated. The plateau value of the adsorption isotherms grows with increasing surface charge density of the substrates and electrolyte concentration. The adsorbed layer of the polycation was characterized by zeta potential measurements with KCl solutions of constant ionic strength and varied pH. The zero point of the charge as well as the shape of the zeta potential–pH plot depends on the coverage of the surface with polycations. For fully covered substrates the zero point of the charge as well as the pKA and pKB values calculated by a stochastic search programme are independent of the substrate. Maximum flocculation was observed at about 30% of the plateau value of the adsorption isotherms.  相似文献   

2.
Following our recent synthesis and characterization of three new cationic polyelectrolytes with subtle hydrophobic variability, this paper reports their physical and chemical properties in aqueous media in relation to their chemical structure. Aryl substituted cationic polyelectrolytes varying with their charge density are reported for the first time. Viscosity studies show that these polymers display typical polyelectrolytic behavior. The flocculation efficiency of the polyelectrolytes was investigated with different counter ions. The zeta potential of the polyelectrolytes indicates the charge of the mono and diquaternary ammonium salts which is supported by chloride analysis. The morphology of polymer before and after flocculation was investigated. The introduction of methylene group and quaternary nitrogen play an important role in the flocculation process. It was shown that increasing the hydrophobicity and charge density of the aryl substituted polymer affects the flocculation in the industrial tannery effluent and bentonite suspension.  相似文献   

3.
Oil-in-water emulsions are usually formed during oil production and treatment. Before being discarded, such dispersions should be treated. In order to improve the oil–water separation process using physical processes (decantation, flotation, centrifugation, etc.) the particle size of the disperse phase should be increased. This may be achieved through flocculation, which consists in the agglomeration of various particles or drops, using, as flocculating agents, high molecular weight hydrophilic macromolecules. A few studies have been carried out on the flocculation of finely divided oil drops in brine with the aid of generally ionic polyelectrolytes. This work shows the results obtained using nonionic polymers as flocculants. Commercial samples of poly(ethylene oxide-b-propylene oxide) and poly(vinyl alcohol) were evaluated through flocculation–flotation tests as well as the drop size distribution. The performance of such additives as flocculants for oil–water dispersions is related to their structure, composition, molecular weight and hydrophilic–lipophilic balance. The composition of the produced water is also an important parameter when choosing the features of the flocculant additive.  相似文献   

4.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

5.
Different positive polyelectrolytes having the same charge density, molecular weight, and molecular weight distribution were employed for polyelectrolyte multilayer (PEMU) assembly. The polycations differed only in the heteroatom on which the positive charge resided: poly(vinyl benzyl trimethyl ammonium) chloride, poly(vinyl benzyl trimethyl phosphonium) chloride, and poly(vinyl benzyl dimethyl sulfonium) chloride. While the ammonium repeat unit has been employed on numerous occasions for PEMU assembly, the phosphonium and sulfonium units are relatively neglected. The polyanions, poly(styrene sulfonate), PSS, or poly(acrylic acid), PAA, were typical pH-independent or pH-dependent polymers, respectively. All three polyoniums were quite similar in showing linear layer-by-layer buildup with PSS and exponential growth with PAA, under the conditions employed. Hydration and wettability were also similar between polyoniums.  相似文献   

6.
The flocculation kinetics of kaolin particles induced by two polyelectrolytes is studied by using small-angle laser light scattering (SALLS). Two different methods, image analysis and SALLS, are used to calculated the fractal dimensions of flocs formed under different flocculation mechanisms. For a high charge density of polydiallyldimethylammonium chloride (PDADMAC), the initially flocculation rates are slow due to the quite low molecular weight. Smaller and more compact flocs are in the particle–particle connections, and restructuring of the flocs occurs in the flocculation process. With cationic polyacrylamide C498 of very high molecular weight and low charge density, however, the initially flocculation rates are much higher due to its rapid adsorption on kaolin particles, but it will take the adsorbed polymer a much longer time to reach equilibrium due to re-conformation. High potentialities of adsorption prevent the particles from entering the interior of the floc structure or rearrangement, which results in a more open floc structure. Different underlying flocculation mechanisms are evident for these two kinds of polyelectrolytes, in which charge neutralization is mainly involved for the low molecular weight and high charge density polymer of PDADMAC while polymer bridging is suggested to be the dominant mechanism for the high molecular weight polyelectrolyte of C498.  相似文献   

7.
Preparation and characterization of some nonstoichiometric interpolyelectrolyte complexes (NIPECs) as stable colloidal dispersions by the interaction between poly(sodium 2-acrylamido-2-methylpropanesulfonate) (NaPAMPS) and three strong polycations bearing quaternary ammonium salt centres in the backbone, poly(diallyldimethylammonium chloride) (PDADMAC) and two polycations containing N,N-dimethyl-2-hydroxypropyleneammonium chloride units (PCA5 and PCA5D1), have been followed in this study as a function of the polycation structure and polyelectrolyte concentration. Complex characteristics were followed by polyelectrolyte titration, turbidity and quasi-ellastic light scattering. Almost monodisperse NIPECs nanoparticles with a good storage stability were prepared when total concentration of polyelectrolyte was varied in the range 0.85-6.35 mmol/L, at a ratio between charges (n/n+) of 0.7. NIPECs as a new kind of flocculants were used to flocculate a stable monodisperse silica suspension. The main advantage of NIPECs as flocculants is the broad flocculation window, which is a very important aspect for industrial applications.  相似文献   

8.
Summary High molecular weight poly 2- and 4-vinyl pyridines were synthesized by ionic polymerisation and their flocculation efficiency tested against kaolin and silica dispersions at pH 3. Low additions of the polymers, around 3 parts per 103 parts solid, destabilize the dispersions and clarify silica dispersions to a remarkable extent; however, over-addition of polymer leads to partial restabilization. The flocculation efficiency improves with increase of solids content, especially with clay dispersions. Flocculation efficiency increases with polymer molecular weight, especially over the lower part of the range covered, but is relatively independent of pH in the range 2–4. Quaternization of poly(4-vinyl pyridine) with bromobutane produces a good flocculant for aqueous silica dispersions in which the degree of restabilization on over-dosing depends on the KCI content. TheN-oxide derivatives of the vinyl pyridine polymers do not affect the colloidal stability of silica dispersions. The observations are interpreted in terms of bridging flocculation by the cationic polymer molecules between anionic surface sites on the solid particles.  相似文献   

9.
The interaction between strong polycations, which possess the ammonium quaternary centers attached to an acrylic macromolecular chain derived from poly(N,N-dimethylaminoethyl methacrylate) (polycations Qx), and divalent counterions was investigated by viscometry and turbidimetry. Conformational changes of polycations were influenced by the polycation charge density, counterion nature (SO42− or S2O82−) and concentration. The morphology of the polycation layers deposited onto silicon wafers has been studied by tapping mode atomic force microscopy, a strong influence of the polycation and ammonium persulfate concentration on the surface topography being observed. The optimum flocculation concentration of polycation decreased and the flocculation window increased in the presence of S2O82−, in the destabilization of kaolin model dispersion. Removal of Congo Red from aqueous solution by the complex system formed between polycations and divalent counterions was also investigated. The behavior of polycations Qx in separation processes was compared with that of one polycation containing 95 mol% N,N-dimethyl-2-hydroxypropyleneammonium chloride units in the backbone (PCA5).  相似文献   

10.
Peculiarities of the formation of polyelectrolyte complexes based on cationic and anionic copolymers of acrylamide having different macromolecule charge densities on the surfaces of kaolin particles in highly concentrated salt solution are investigated. The interactions of the copolymers with the clay particle surface and with each other are studied by electrokinetic and IR spectroscopy methods. The rheological properties of kaolin suspensions are investigated in a salt solution in the presence of the polyelectrolytes. The flocculation ability of the polyelectrolytes and their binary mixtures with respect to clay-salt dispersion is estimated. The mechanism for the formation of polyelectrolyte complexes on the surface of clay particles is discussed. It is shown that the complexation of oppositely charged polyelectrolytes on the surfaces of clay particles intensifies the flocculation of clay-salt dispersions.  相似文献   

11.
The cationic organic flocculant N-hydroxypropyl trimethyl ammonium chloride chitosan (HTCC) was used for flocculation of pectin, which was an impurity widespread in Chinese medicine water extractions, and the effects of the flocculant dosage, the pectin concentration, pH value, and the solution temperature on the flocculation efficiency were studied. FTIR spectra of pectin and its flocs were analyzed to determine the flocculation mechanism. The results showed that HTCC effectively flocculated the high-methoxyl pectin (HMP) and low-methoxyl pectin (LMP). The removal rate of HMP and LMP were above 85% and 90%, respectively. The flocculant dosage and pH value were the key influential factors. The pectin flocculation mechanism was mainly adsorption bridging and charge neutralization by hydrogen bonding, electrostatic adsorption, and hydrophobic interaction. The optimal flocculation conditions of HMP and LMP by HTCC were achieved.  相似文献   

12.
Silica nanoparticles are used in various applications including catalysts, paints and coatings. To reach an optimal performance via stability and functionality, in most cases, the surface properties of the particles are altered using complex procedures. Here we describe a simple method for surface modification of silica nanoparticles (SNP) using sequential adsorption of oppositely charged components. First, the SNPs were made cationic by adsorption of a cationic polyelectrolyte. Poly(allylamine hydrochloride) (PAH) and polyethyleneimine (PEI) were chosen as polycations to investigate the difference between a linear and a branched polyelectrolyte. Next, the dispersion of cationic SNPs was combined with an anionic alkyl ketene dimer (AKD) emulsion. Using this approach cationic, hydrophobic silica particle dispersions were produced. Dynamic light scattering, contact angle measurements and atomic force microscopy (AFM) were used for analyzing the particle and coating layer properties. The chosen polyelectrolyte affected the structure of the dispersion. The layer build-up was studied in detail using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and layer properties of the cationic polyelectrolytes adsorbed on silica as well as the affinity of AKD to this layer were explored. The application possibilities of the modified particle dispersions were demonstrated by preparing paper and silica surfaces with tailored properties, such as elevated surface hydrophobicity, using an ultrathin coating layer.  相似文献   

13.
Three ionic/nonionic random copolymers of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) with either t-butyl acrylamide (TBA) or methyl methacrylate (MM), were used in the preparation of some polyelectrolyte complex dispersions (PCD) with two strong polycations of integral type, poly(diallyldimethylammonium chloride) (PDADMAC), and an ionene type polycation, containing 95 mol% N,N-dimethyl-2-hydroxypropyleneammonium chloride repeat units (PCA5). The novelty of the paper is that PCDs with a high colloidal stability, both before and after the complex stoichiometry, were obtained even with hydrophilic/hydrophobic polyanions, with a high titrant addition rate (TAR), a less explored parameter, which allows a fine control of PCDs aggregation level, in salt-free aqueous solutions. The characteristics of PCDs were also correlated with the polyanion average charge density and the structure of the nonionic comonomer, at a constant TAR, the polyanion with the lowest charge density leading to the highest turbidities and the lowest colloidal stabilities. A mechanism of the PCDs colloidal stabilization as a function of TAR was suggested in the paper.  相似文献   

14.
The aim of this study was to improve the flocculation of wastewater from gravel pits, especially the separation of the finely dispersed inorganic particles and the removing of humic acid. Clay was used as a model to investigate the influence of humic acid on the flocculation with two different types of polycation. The dependence of the sedimentation behaviour on time was investigated as well as the turbidity of the supernatant and the light absorption as a measure for humic acid removal. Bridging of particles remained the dominant mechanism of particle destabilisation by treating the clay in water with cationic polyacrylamides of very high molecular mass (CPAM). Poly(diallyldimethylammonium chloride) (PDADMAC) of lower molar mass (35 000 g/mol) was found to act by charge neutralisation. In this case the so-called flocculation window was very small. This behaviour is the same for systems containing humic acid. However, the need for cationic flocculant increases because humic acid as a weak polyanion can interact with the polycation. By using CPAMs with low charge this interaction does not play a significant role. The optimum flocculation concentration is relatively high. The flocs are larger and the velocity of sedimentation is higher than for the short-chain and highly charged polycation PDADMAC. However, because the latter is more effective in removal of humic acid at the point of optimum flocculation it is more advantageous to combine the highly charged polycation with a high molecular weight polyanion (dual system).  相似文献   

15.
Nonionic polyethylene oxide (PEO) and anionic polyacrylamide (PAM) flocculation of kaolinite dispersions has been investigated at pH 7.5 in the temperature range 20-60 degrees C. The surface chemistry (zeta potential), particle interactions (shear yield stress), and dewatering behavior were also examined. An increase in the magnitude of zeta potential of kaolinite particles, in the absence of flocculant and at a fixed PEO and PAM concentration, with increasing temperature was observed. The zeta potential behavior of the flocculated particles indicated a decrease in the adsorbed polymer layer thickness, while at the same time, however, the adsorbed polymer density showed a significant increase with increasing temperature. These results suggest that polymer adsorption was accompanied by temperature-influenced conformation changes. The hydrodynamic diameter and supernatant solution viscosity of both polymers decreased with increasing temperature, consistent with a change in polymer-solvent interactions and conformation, prior to adsorption. The analysis of the free energy (DeltaG(ads)) of adsorption showed a strong temperature dependence and the adsorption process to be more entropically than enthalpically driven. The polymer conformation change and increased negative charge at the kaolinite particle surface with increasing temperature resulted in decreased polymer bridging and flocculation performance. Consequently, the shear yield stress and the rate and the extent of dewatering (consolidation) of the pulp decreased significantly at higher temperatures (>40 degrees C). The temperature effect was more pronounced in the presence of PEO than PAM, with 40 and 20 degrees C indicated as the optima for enhanced performance of the latter and former flocculants, respectively. The results demonstrate that a temperature-induced conformation change, together with polymer structure type, plays an important role in flocculation and dewatering behavior of kaolinite dispersions.  相似文献   

16.
The regularities, kinetics and mechanisms of flocculation of Escherichia coli and B. thuringiensis var. israelensis (Bti) cellular suspensions by water-soluble polymers-and first of all cationic polyelectrolytes of different charge density and stiffness of the macromolecule chain have been investigated. The effect of the focculant dose and nature, its charge density, the hydrophobic-hydrophilic balance in macromolecule, the suspension concentration, the mode of adding the reagent, the pH and the medium composition on the degree of aggregation of cells both in perikinetic regime and in a flowing system is considered. It has been shown that the main laws of microorganism's suspension flocculation are the same as the laws of flocculation of inorganic dispersions but at the same time the first process is much more complicated because the cell-flocculant interactions are strongly affected by products of cell metabolism, components of the culture liquor, pH value, electrolyte content as well as by the changing structure of the cell surface. On the basis of complex measurements of polymer adsorption and its effect on the electrokinetic potential and degree of aggregation of cells, a conclusion is made that the aggregation of E. coli cells by flexible polyelectrolytes like polydiethylaminoethylmetacrylate and its copolymers with acrylic acid, acrylamide and vinylpyrrolidone is due to charge neutralization, while the flocculation in the presence of rigid-chain chitosan and its derivatives is caused mainly by "bridging" between cells via adsorbed macromolecules. Extraction of cells from suspension can be enhanced by combination of electroflotation and flocculation by cationic polyelectrolytes. It has been shown that dilute suspensions of Bti bacteria can be effectively flocculated and concentrated using different cationic and anionic polyelectrolytes that is necessary for its formulation and use as anti-mosquito agent.  相似文献   

17.
 The interaction between oppositely charged polyelectrolytes, in this study poly(diallyldimethylammonium chloride) (PDADMAC) and copolymers of acrylamide and sodium-acrylate differing in their chain length and charge density parameter (ξ) was investigated in relation to the molar charge ratio of anionic to cationic charges (n /n +). The molecular weights of the polyelectrolytes used were 2.9·105 g/mol for PDADMAC and for the polyacrylamide copolymers 14 ·106 g/mol as well as 5·105 g/mol obtained by ultrasonic degradation of the high molecular weight copolymers. The charge density parameters of the polyanions used (ξ PR ) varied between 0.14 and 0.64. Complexation between PDADMAC and high molecular weight polyanions leads mainly to macroscopic phase separation whereas the degraded polyanions and PDADMAC formed soluble complexes as well as stable dispersions, if charge excess was available. Precipitates and dispersions were characterized by several methods such as element analysis, thermogravimetry, pyrolysis-GC/MS, PEL titration, ζ-potential measurements, determination of turbidity, particle size measurements and determination of carbon content (TOC).  All precipitated complexes include about 20% water and are of 1:1 stoichiometry concerning ionic binding. Investigations of dispersions confirm 1:1 stoichiometry of complex particles stabilized by excess polyelectrolyte and soluble complexes. It was also found that the particle size can be varied via the charge density parameter of the polyanions used in the range of negative charge excess. Received: 21 June 2001 Accepted: 9 October 2001  相似文献   

18.
Lead sulfide (PbS) nanoparticles have been synthesized in aqueous solutions by a reaction between inorganic lead salts and sodium sulfide and stabilized using the cationic polyelectrolytes branched poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chloride) (PDDA). The structures of the polyamine-stabilized nanoparticle dispersions were examined in detail using UV-vis spectroscopy, small-angle X-ray scattering (SAXS), static and dynamic electrophoretic mobility measurements, and transmission electron microscopy (TEM). Considerable differences were found between the stabilizing efficiencies of these polyelectrolytes, which cannot be attributed to their charge densities or their persistence lengths. Small monodisperse nanoparticles of PbS with a tight stabilizing shell were consistently found only when PEI was used as a stabilizer even at high pH values, although its charge density is then very low. The excellence of PEI as a stabilizer is mainly due to the extensive branching of the chains and the presence of uncharged secondary and tertiary amine groups, which apparently serve as good anchoring points at the nanoparticle surfaces. None of the polyelectrolytes examined here provide long-term protection of the nanoparticles toward oxidation by air, showing that a need for more complex multipurpose stabilizers exists for aqueous PbS dispersions.  相似文献   

19.
The cationic organic flocculant chitosan and its derivative, N-hydroxypropyl trimethyl ammonium chloride chitosan (HTCC), were used in the flocculation of tannic acid, the impurity widespread in Chinese medicine water extractions. This study aimed at investigating the flocculation performance and mechanism of chitosan and HTCC on the tannic acid colloidal particles. The results showed that chitosan and HTCC effectively flocculated the tannic acid solution and the mechanism was mainly for the adsorption bridging and charge neutralization by hydrogen bonding, electrostatic interaction, and hydrophobic interaction. Meanwhile, the charge neutralization of HTCC was stronger than that of chitosan. The optimal flocculation conditions of chitosan and HTCC on tannic acid were achieved.  相似文献   

20.
 The sorption of solved organic molecules such as p-nitrophenol or dyes on previously formed nanoparticles based on polyelectrolyte/micelle complexes or polycation/polyanion complexes was studied. It could be shown that the sorption capability strongly depends on the structure and properties of the complex particles. Investigations have been made with complex particles that differ in their hydrophobic/hydrophilic structure, size and net charge. Such complex aggregates could be prepared by mixing the cationic surfactant dodecylamido-ethyldimethylbenzylammonium chloride, the polycations poly(diallyldimethylammonium chloride) or poly(methacryloyloxyethyldimethylbenzylammonium chloride) and the copolymers of maleic acid with propene or methylstyrene as anionic components. It is found that the sorption capability increases with increasing molar mass and hydrophobic properties of the components used. In addition, the concentration ratio c polym/c org.poll that was required to reach optimal sorption conditions could be decreased by the use of macromolecules with high molar masses. The best results were obtained by using cationic stabilized complex particles formed with high-molar-mass polycations as sorbents for anionic dye molecules. Received: 10 November 1999 Accepted: 24 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号