首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The pulsatile flow of blood through catheterized artery has been studied in this paper by modeling blood as Herschel–Bulkley fluid and the catheter and artery as rigid coaxial circular cylinders. The Herschel–Bulkley fluid has two parameters, the yield stress θ and the power index n. Perturbation method is used to solve the resulting quasi-steady nonlinear coupled implicit system of differential equations. The effects of catheterization and non-Newtonian nature of blood on yield plane locations, velocity, flow rate, wall shear stress and longitudinal impedance of the artery are discussed. The existence of two yield plane locations is investigated and their dependence on yield stress θ, amplitude A, and time t are analyzed. The width of the plug core region increases with increasing value of yield stress at any time. The velocity and flow rate decrease, whereas wall shear stress and longitudinal impedance increase for increasing value of yield stress with other parameters held fixed. On the other hand, the velocity, flow rate and wall shear stress decrease but resistance to flow increases as the catheter radius ratio (ratio of catheter radius to vessel radius) increases with other parameters fixed. The results for power law fluid, Newtonian fluid and Bingham fluid are obtained as special cases from this model.  相似文献   

2.
The steady two-dimensional laminar boundary layer flow of a power-law fluid past a permeable stretching wedge beneath a variable free stream is studied in this paper. Using appropriate similarity variables, the governing equations are reduced to a single third order highly nonlinear ordinary differential equation in the dimensionless stream function, which is solved numerically using the Runge-Kutta scheme coupled with a conventional shooting procedure. The flow is governed by the wedge velocity parameter λ, the transpiration parameter f0, the fluid power-law index n, and the computed wall shear stress is f″(0). It is found that dual solutions exist for each value of f0, m and n considered in λ − f″(0) parameter space. A stability analysis for this self-similar flow reveals that for each value of f0, m and n, lower solution branches are unstable while upper solution branches are stable. Very good agreements are found between the results of the present paper and that of Weidman et al. [28] for n = 1 (Newtonian fluid) and m = 0 (Blasius problem [31]).  相似文献   

3.
Peristaltic transport in a two-dimensional non-uniform tube filled with Herschel–Bulkley fluid is studied under the assumptions of long wavelength and low Reynold number. The fluid flow is investigated in the wave frame of reference moving with the velocity of the peristaltic wave. Exact solution for the velocity field, the temperature profile, the stream functions and the pressure gradient are obtained. The physical behavior of τ, n, α and on the pressure rise versus flow rate are discussed through graphs. At the end of the article trapping phenomena for Herschel–Bulkley and also for Newtonian, Bingham and power law (which are the special cases of Herschel–Bulkley fluid) fluid are discussed.  相似文献   

4.
A spectral element—Fourier method (SEM) for Direct Numerical Simulation (DNS) of the turbulent flow of non-Newtonian fluids is described and the particular requirements for non-Newtonian rheology are discussed. The method is implemented in parallel using the MPI message passing kernel, and execution times scale somewhat less than linearly with the number of CPUs, however this is more than compensated by the improved simulation turn around times. The method is applied to the case of turbulent pipe flow, where simulation results for a shear-thinning (power law) fluid are compared to those of a yield stress (Herschel–Bulkley) fluid at the same generalised Reynolds number. It is seen that the yield stress significantly dampens turbulence intensities in the core of the flow where the quasi-laminar flow region there co-exists with a transitional wall zone. An additional simulation of the flow of blood in a channel is undertaken using a Carreau–Yasuda rheology model, and results compared to those of the one-equation Spalart-Allmaras RANS (Reynolds-Averaged Navier–Stokes) model. Agreement between the mean flow velocity profile predictions is seen to be good. Use of a DNS technique to study turbulence in non-Newtonian fluids shows great promise in understanding transition and turbulence in shear thinning, non-Newtonian flows.  相似文献   

5.
In this paper, the problem of buoyancy driven micropolar fluid flow within an annulus formed between two circular concentric/eccentric tubes has been numerically investigated using Fourier spectral method. The annulus inner wall is uniformly heated and maintained at constant heat flux while the outer wall is cooled and kept at constant temperature. The full governing equations of linear momentum, angular momentum and energy have been solved to give the details of flow and thermal fields. The heat convection process in the annulus is mainly controlled by modified Rayleigh number Ra, Prandtl number Pr, radius ratio Rr, eccentricity, e and material parameters of Micropolar fluid. The material parameters are dimensionless spin gradient viscosity λ, dimensionless micro-inertia density B and dimensionless vortex viscosity D. The study considered a range of modified Ra up to 105 and is carried out at three values of Pr, namely Pr = 0.1, 1.0 and 7.0, and at three values of parameter D, namely, D = 2, 4, 8 while the eccentricity is varied between −0.65 and +0.65. The radius ratio is fixed at 2.6 while the material parameters B and λ are assigned the value of 1. The effect of the controlling parameters on flow and thermal fields has been investigated with emphasis on the effect of these parameters on local and mean inner wall temperatures. The study has shown that for certain controlling parameters the steady mean temperature of inner wall of the annulus is maximum at a certain eccentricity. The study has also shown that as the parameter D increases the steady mean inner wall temperature increases. Moreover, the study has shown that as the Pr increases the mean inner wall temperature decreases.  相似文献   

6.
In the present investigation, we have studied the influence of heat and chemical reactions on blood flow through anisotropically tapered elastic artery with time-variant overlapping stenosis. The nature of blood in small arteries are analyzed mathematically by considering it as a Sisko fluid. The analysis is carried out for an artery with a mild stenosis. Analytical expressions for the axial velocity, the stream function, the temperature distribution, the concentration of fluid, the pressure gradient, the resistance impedance and the wall shear stress distribution have been computed numerically and the results were studied for various values of the physical parameters, such as the Sisko parameter b, the power index n, the taper angle ?  , the maximum height of stenosis δδ, the Soret number Sr, the Brickmann number Br, the total mass of the vessel and the surrounding tissues M and the longitudinal contributions of the viscous and elastic constraints to the total tethering C and K respectively. The obtained results show that the magnitude of the axial velocity is higher for a Newtonian fluid than that for a Sisko fluid and it decreases by increasing of the power index n also the transmission of axial velocity curves through a tethered tube is substantially higher than that through the free tube. The wall shear stress distribution and resistance impedance profiles with the time have an oscillation form through the tapered overlapping stenosed arteries and this oscillation decaying as the time increases. The temperature profile increase by increasing the Sisko parameter b and the power index n   but the concentration profile has an opposite behavior as compared to the temperature profile. For a fixed flux, the magnitude of the pressure drop for a shear-thinning fluid (n<1)(n<1) is much larger than that through a shear-thickening (n>1)(n>1). The stream lines separate and the trapping bolus appear by increasing the maximum height of the stenosis δδ. The trapping bolus increase in size toward the line center of the tube as the power index n increases and it appear gradually by increasing the Sisko parameter b. Finally the size of trapped bolus for the stream lines in the free isotropic tube is smaller than those in the tethered tube.  相似文献   

7.
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel–Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.  相似文献   

8.
The simultaneous effects of suction and injection on tangential movement of a nonlinear power-law stretching surface governed by laminar boundary layer flow of a viscous and incompressible fluid beneath a non-uniform free with stream pressure gradient is considered. The self-similar flow is governed by Falkner-Skan equation, with transpiration parameter γ, wall slip velocity λ and stretching sheet (or pressure gradient) parameter β. The exact solution for β = −1 and three closed form asymptotic solutions for β large, large suction γ, and λ → 1 have also been presented. Dual solutions are found for β = −1 for each value of the transpiration parameter, including the non-permeable surface, for each prescribed value of the wall slip velocity λ. The large β asymptotic solution also dual with respect to wall slip velocity λ, but do not depend on suction and blowing. The critical values of γ, β and λ are obtained and their significance on the skin friction and velocity profiles is discussed. An approximate solution by integral method for a trial velocity profile is presented and results are compared with the exact solutions.  相似文献   

9.
Flow and thermal field in nanofluid is analyzed using single phase thermal dispersion model proposed by Xuan and Roetzel [Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707]. The non-dimensional form of the transport equations involving the thermal dispersion effect is solved numerically using semi-explicit finite volume solver in a collocated grid. Heat transfer augmentation for copper–water nanofluid is estimated in a thermally driven two-dimensional cavity. The thermo-physical properties of nanofluid are calculated involving contributions due to the base fluid and nanoparticles. The flow and heat transfer process in the cavity is analyzed using different thermo-physical models for the nanofluid available in literature. The influence of controlling parameters on convective recirculation and heat transfer augmentation induced in buoyancy driven cavity is estimated in detail. The controlling parameters considered for this study are Grashof number (103 < Gr < 105), solid volume fraction (0 < ? < 0.2) and empirical shape factor (0.5 < n < 6). Simulations carried out with various thermo-physical models of the nanofluid show significant influence on thermal boundary layer thickness when the model incorporates the contribution of nanoparticles in the density as well as viscosity of nanofluid. Simulations incorporating the thermal dispersion model show increment in local thermal conductivity at locations with maximum velocity. The suspended particles increase the surface area and the heat transfer capacity of the fluid. As solid volume fraction increases, the effect is more pronounced. The average Nusselt number from the hot wall increases with the solid volume fraction. The boundary surface of nanoparticles and their chaotic movement greatly enhances the fluid heat conduction contribution. Considerable improvement in thermal conductivity is observed as a result of increase in the shape factor.  相似文献   

10.
In order to verify the reasonableness of off-gas pressure and wall temperature, a mathematical model for gas flow and heat transfer in ladle furnace (LF) lid is developed based on 3-D Navier–Stokes equations and kε two equation turbulent models as well as energy conservation equation. The gas velocity vector distribution of skirt clearance between the top edge of ladle and furnace lid and electrode gaps between three graphite electrodes and furnace lid, the gas flow line distribution, pressure and temperature distribution on the furnace lid wall are simulated. Simulation results show that appropriate off-gas pressures are 200 Pa, 200 Pa and 150 Pa when electric arc emerges from molten steel surface and alloy hole is unsealed, electric arc emerges from molten steel surface and alloy hole is closure, electric arc immerges into molten steel surface and alloy hole is closure, respectively. The maximum temperature presents in the middle of LF lid in all of heating conditions, and the temperature value are 563, 603 and 343 K. Finally, the relations between gas volume and off-gas pressure are analyzed in different width of skirt clearance, and some relevant mathematical expressions are obtained. By comparing both simulation results and practical data, the advice on reducing off-gas pressure is proposed, and the maximum temperatures of furnace lid wall have good agreement with actual data.  相似文献   

11.
In this paper, an implicitly implemented high order large eddy simulation by using the fifth order bandwidth-optimized WENO scheme is applied to make comprehensive studies on ramp flows with and without control at Mach 2.5 and Reθ = 5760. Flow control in the form of microramp vortex generators (MVG) is applied. The mechanism of vortex ring generation behind MVG has been studied in detail and shear layer instability has been studied and found as the mechanism of K–H vortex ring generation. A series of new observations on the flow around supersonic MVG have been made including inflection points (surface in 3-D), vorticity conservation, interaction of the primary vortex and new generated K–H vortex rings, and the K–H vortex ring structure. The numerical observations have been confirmed by the experimental work.  相似文献   

12.
We consider two classes of graphs: (i) trees of order n and diameter d =n − 3 and (ii) unicyclic graphs of order n and girth g = n − 2. Assuming that each graph within these classes has two vertices of degree 3 at distance k, we order by the index (i.e. spectral radius) the graphs from (i) for any fixed k (1 ? k ? d − 2), and the graphs from (ii) independently of k.  相似文献   

13.
In this paper, we consider the minimum flow problem on network flows in which the lower arc capacities vary with time. We will show that this problem for set {0, 1, … , T} of time points can be solved by at most n minimum flow computations, by combining of preflow-pull algorithm and reoptimization techniques (no matter how many values of T are given). Running time of the presented algorithm is O(n2m).  相似文献   

14.
15.
The paper deals with numerical investigation of the effect of plaque morphology on the flow characteristics in a diseased coronary artery using realistic plaque morphology. The morphological information of the lumen and the plaque is obtained from intravascular ultrasound imaging measurements of 42 patients performed at Cleveland Clinic Foundation, Ohio. For this data, study of Bhaganagar et al. (2010) [1] has revealed the stenosis for 42 patients can be categorized into four types – type I (peak-valley), type II (ascending), type III (descending), and type IV (diffuse). The aim of the present study is to isolate the effect of shape of the stenosis on the flow characteristics for a given degree of the stenosis. In this study, we conduct fluid dynamic simulations for the four stenosis types (type I–IV) and analyze the differences in the flow characteristics between these types. Finely refined tetrahedral mesh for the 3-D solid model of the artery with plaques has been generated. The 3-D steady flow simulations were performed using the turbulence (kε) model in a finite volume based computational fluid dynamics solver. The axial velocity, the radial velocity, turbulence kinetic energy and wall shear stress profiles of the plaque have been analyzed. From the axial and radial velocity profiles results the differences in the velocity patterns are significantly visible at proximal as well as distal to the throat, region of maximum stenosis. Turbulent kinetic energy and wall shear stress profiles have revealed significant differences in the vicinity of the plaque. Additional unsteady flow simulations have been performed to validate the hypothesis of the significance of plaque morphology in flow alterations in diseased coronary artery. The results revealed the importance of accounting for plaque morphology in addition to plaque height to accurately characterize the turbulent flow in a diseased coronary artery.  相似文献   

16.
To analyze the hypersonic flow past a conical cone, the variations of gasdynamic properties subjected to the longitudinal curvature effect by using the perturbation method. An outer perturbation expansion has been carried out by recent researchers, but a problem occurred, the outer expansion solutions are not uniformly valid in the shock layer, however, the outcome near the conical body surface called vortical layer remains deflective. This study intends to discover uniformly valid analytical solutions in the shock layer by applying the inner perturbation expansions matching with the out expansions to analyze the characteristics in the whole region including shock layer and vortical layer. Starting from the zero-order approximate solutions for hypersonic conical flow is then applied as the basic solutions for the outer perturbation expansions of a flow field. The governing equations and boundary conditions are also expanded via outer perturbations. Using an approximate analytical scheme in the derivation process, first-order perturbation equations can be simplified and the approximate closed-form solutions are obtained; furthermore, the various flow field quantities, including the normal force coefficient on the cone surface, have been calculated. According to the variations of gasdynamic properties, the longitudinal curvature effect for the hypersonic flow past a conical cone can be determined. Thicknesses of shock layer and vortical layer can be predicted as well. The physical phenomena inside both layers can be investigated carefully, the conditions for an elliptic cone with longitudinal curvature, m = 1 and n = 2 and other conditions of parameters; the perturbation parameter, εm2 = 0.1, semi-vertex angle of the unperturbed cone, δ = 10°, and hypersonic similarity parameter, Kδ = Mδ = 1.0, the thickness of vortical layer, ηVL, can be calculated at the position angle of conical cone body, ? = 30° was demonstrated here. Results show how very thin the vortical layer is approximately only 10% of the shock layer close to the body, the pressure in the whole shock layer is verified to be uniformly valid which agrees with previous studies. Large gradient changes in entropy and density are found when the flow approaches the cone surface, the most important is, this method provides a benchmark solution to the hypersonic flow past a conical cone and to assist the grids and numerics for numerical computation should be fashioned to accommodate the whole flow field region including the vortical layer of rapid adjustment, and let the analysis become more effective and low cost.  相似文献   

17.
An alternative method is presented for solving the eigenvalue problem that governs the stability of Taylor–Couette and Dean flow. The eigenvalue problems defined by the two-point boundary value problems are converted into initial value problems by applying unit disturbance method developed by Harris and Reid [27] in 1964. Thereafter, the initial value problems are solved by differential transform method in series and the eigenvalues are computed by shooting technique. Critical wave number and Taylor number for Taylor–Couette flow are computed for a wide range of rotation ratio (μ), −4 ? μ ? 1 (first mode) and −2 ? μ ? 1 (second mode). The radial eigenfunction and cell patterns are presented for μ = −1, 0, 1. Also, we have computed critical wave number and Dean number successfully.  相似文献   

18.
An analysis is made of the steady shear flow of an incompressible viscous electrically conducting fluid past an electrically insulating porous flat plate in the presence of an applied uniform transverse magnetic field. It is shown that steady shear flow exists for suction at the plate only when the square of the suction parameter S is less than the magnetic parameter Q. In this case the velocity at a given point increases with increase in either the magnetic field or suction velocity. The shear stress at the plate increases with increase in either S or the free-stream shear-rate parameter σ1 or Q. The analysis further reveals that solution exists for steady shear flow past a porous flat plate subject to blowing only when the square of the blowing parameter S1 is less than Q. It is found that the induced magnetic field at a given location decreases with increase in Q. Further the wall shear stress decreases with increase in S1. No steady shear flow is possible for blowing at the plate when S12 > Q. Received: June 16, 2004; revised: October 24, 2004  相似文献   

19.
Let Ψ be a bounded set of n × n nonnegative matrices in max algebra. In this paper we propose the notions of the max algebra version of the generalized spectral radius μ(Ψ) of Ψ, and the max algebra version of the joint spectral radius η(Ψ) of Ψ. The max algebra version of the generalized spectral radius theorem μ(Ψ) = η(Ψ) is established. We propose the relationship between the generalized spectral radius ρ(Ψ) of Ψ (in the sense of Daubechies and Lagarias) and its max algebra version μ(Ψ). Moreover, a generalization of Elsner and van den Driessche’s lemma is presented as well.  相似文献   

20.
Pulsatile flow of blood through mild stenosed narrow arteries is analyzed by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the coupled implicit system of non-linear differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood on these flow quantities are discussed. It is found that the pressure drop, plug core radius, wall shear stress and resistance to flow increase with the increase of the yield stress or stenosis size while all other parameters held constant. The percentage of increase in the resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with those of the single-fluid model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号