首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
以浅水长波近似方程组为例,提出了拟小波方法求解(1 1)维非线性偏微分方程组数值解,该方程用拟小波离散格式离散空间导数,得到关于时间的常微分方程组,用四阶Runge-K utta方法离散时间导数,并将其拟小波解与解析解进行比较和验证.  相似文献   

3.
High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However the WENO procedure can not be applied directly to obtain a stable scheme when negative linear weights are present. In this paper, we first briefly review the WENO framework and the role of linear weights, and then present a detailed study on the positivity of linear weights in a few typical WENO procedures, including WENO interpolation, WENO reconstruction and WENO approximation to first and second derivatives, and WENO integration. Explicit formulae for the linear weights are also given for these WENO procedures. The results of this paper should be useful for future design of WENO schemes involving interpolation, reconstruction, approximation to first and second derivatives, and integration procedures.  相似文献   

4.
The classical system of shallow water (Saint–Venant) equations describes long surface waves in an inviscid incompressible fluid of a variable depth. Although shock waves are expected in this quasi-linear hyperbolic system for a wide class of initial data, we find a sufficient condition on the initial data that guarantee existence of a global classical solution continued from a local solution. The sufficient conditions can be easily satisfied for the fluid flow propagating in one direction with two characteristic velocities of the same sign and two monotonically increasing Riemann invariants. We prove that these properties persist in the time evolution of the classical solutions to the shallow water equations and provide no shock wave singularities formed in a finite time over a half-line or an infinite line. On a technical side, we develop a novel method of an additional argument, which allows to obtain local and global solutions to the quasi-linear hyperbolic systems in physical rather than characteristic variables.  相似文献   

5.
We classify zeroth-order conservation laws of systems from the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The classification is carried out up to equivalence generated by the equivalence group of this class. We find additional point equivalences between some of the listed cases of extensions of the space of zeroth-order conservation laws, which are inequivalent up to transformations from the equivalence group. Hamiltonian structures of systems of shallow water equations are used for relating the classification of zeroth-order conservation laws of these systems to the classification of their Lie symmetries. We also construct generating sets of such conservation laws under action of Lie symmetries.  相似文献   

6.
对(2+1)维浅水波方程的现有解进行了推广.应用CK方法对方程进行求解,得到方程的Backlund变换公式,将已知解代入公式,求得一些新的精确解,从而推广了浅水渡方程的解.  相似文献   

7.
8.
2+1维广义浅水波方程的类孤子解与周期解   总被引:2,自引:0,他引:2       下载免费PDF全文
该文基于一个Riccati方程组,提出了一个新的广义投影Ric cati展开法,该方法直接简单并能构造非线性微分方程更多的新的解析解。利用该算法研究了(2+1)维广义浅水波方程,并求得了许多新的精确解,包括类孤子解和周期解。该算法也能应用到其它非线性微分方程中。  相似文献   

9.
We consider the symmetric schemes in Boundary Value Methods (BVMs) applied to delay differential equations y(t)=ay(t)+by(t-τ) with real coefficients a and b. If the numerical solution tends to zero whenever the exact solution does, the symmetric scheme with (k1+m,k2)-boundary conditions is called τk1,k2(0)-stable. Three families of symmetric schemes, namely the Extended Trapezoidal Rules of first (ETRs) and second (ETR2s) kind, and the Top Order Methods (TOMs), are considered in this paper.By using the boundary locus technology, the delay-dependent stability region of the symmetric schemes are analyzed and their boundaries are found. Then by using a necessary and sufficient condition, the considered symmetric schemes are proved to be τν,ν-1(0)-stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号