首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior studies demonstrated that a low level (LD10–15) of lysosomal photodamage can sensitize cells to the apoptotic death that results from subsequent mitochondrial photodamage. We have proposed that this process occurs via a calpain‐catalyzed cleavage of the autophagy‐associated protein ATG5 to form a proapoptotic fragment. In this report, we provide evidence for the postulated ATG5 cleavage and show that the sequential photodynamic therapy (PDT) protocol can also partly overcome the adverse effect of hypoxia on the initiation of apoptosis. While autophagy can offer cytoprotection after mitochondrial photodamage, this does not appear to apply when lysosomes are the target. This may account for the ability of very low PDT doses directed at lysosomes to evoke ATG5 cleavage. The resulting proapoptotic effect overcomes intrinsic cytoprotection from mitochondrial photodamage along with a further stimulation of phototoxicity.  相似文献   

2.
Several previous studies have suggested that the peripheral benzodiazepine receptor (PBR) on the mitochondrial surface was an important target for photodynamic therapy (PDT). In this study we compared PBR affinity vs photodynamic efficacy of protoporphyrin-IX (PP-IX) and two structural analogs, PP-III and PP-XIII, using murine leukemia L1210 cells in culture. The results indicate that the three agents have approximately equal hydrophobicity, affinity for L1210 cells and ability to initiate photodamage leading to an apoptotic response. But only PP-IX had significant affinity for the PBR. These data indicate that the relationship between PDT efficacy and PBR affinity may hold only for sensitizers with the PP-IX configuration.  相似文献   

3.
When the initial effect of photodynamic therapy (PDT) involves mitochondrial photodamage, an early effect is loss of the mitochondrial membrane potential (ΔΨm). Using murine hepatoma 1c1c7 cells and a photosensitizing agent known to target mitochondria, we examined loss of ΔΨm, initiation of apoptosis and loss of viability as a function of time and light dose. There was a correlation between loss of viability and the rapid disappearance of ΔΨm, as detected by the potential‐sensitive probe Mitotracker Orange (MTO). Loss of ΔΨm was, however, reversible even with a substantial loss of viability. Unless there was a supralethal level of photodamage, 1c1c7 cells recovered their mitochondrial membrane potential, even if the cell population was on the pathway to apoptosis and cell death. These results indicate that when mitochondria are the initial PDT target, a qualitative estimate of photokilling can be provided by assessing the initial loss of ΔΨm.  相似文献   

4.
Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.  相似文献   

5.
This study was designed to examine determinants of the discovery that low‐dose lysosomal photodamage (lyso‐PDT) could potentiate the efficacy of subsequent low‐dose mitochondrial photodamage (mito‐PDT). The chlorin NPe6 and the benzoporphyrin derivative (BPD) were used to separately target lysosomes and mitochondria, respectively, in murine hepatoma cells. Lyso‐PDT (LD5 conditions) followed by mito‐PDT (LD15 conditions) enhanced the loss of the mitochondrial membrane potential, activation of procaspases‐3/7 and photokilling. Reversing the sequence was less effective. The optimal sequence did not enhance reactive oxygen species formation above that obtained with low‐dose mito‐PDT. In contrast, alkalinization of lysosomes with bafilomycin also enhanced low‐dose mito‐PDT photokilling, but via a different pathway. This involves redistribution of iron from lysosomes to mitochondria leading to enhanced hydroxyl radical formation, effects not observed after the sequential procedure. Moreover, Ru360, an inhibitor of mitochondrial calcium and iron uptake, partially suppressed the ability of bafilomycin to enhance mito‐PDT photokilling without affecting the enhanced efficacy of the sequential protocol. We conclude that sequential PDT protocol promotes PDT efficacy by a process not involving iron translocation, but via promotion of the pro‐apoptotic signal that derives from mitochondrial photodamage.  相似文献   

6.
In this study, murine leukemia L1210 cells were used to compare the effects of photodynamic therapy (PDT) with those of the apoptotic nonpeptidic Bcl-2 ligand ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1). The photosensitizing agent capronyloxy-tetrakis methyloxyethyl porphycene (CPO) was selected from a group of sensitizers previously shown to target the antiapoptotic protein Bcl-2 for photodamage. Like PDT with CPO, HA14-1 caused the rapid activation of procaspase-3, followed by the appearance of an apoptotic morphology within 60 min. Caspase activation after a sublethal dose of either PDT or HA14-1 was enhanced by staurosporine or the bile acid ursodeoxycholic acid. Moreover, PDT promoted procaspase activation and lethality of HA14-1 and vice versa. Effects of PDT versus HA14-1 could not be distinguished on the basis of the reactive oxygen species formation. Both caused the rapid oxidation of 2',7'-dichlorofluorescein. These results are consistent with the hypothesis that Bcl-2 photodamage is a target for some photosensitizing agents.  相似文献   

7.
Photodynamic therapy (PDT) directed against the endoplasmic reticulum (ER) is also known to target antiapoptotic Bcl-2 family proteins. This effect is associated with the initiation of both apoptosis, a cell death pathway, and autophagy, an organelle recycling system that can lead to survival or cell death. In this study, we examined the ability of the Bcl-2 antagonist HA14-1 to promote the photodynamic efficacy of PDT directed at the ER. At concentrations that independently caused only a small loss of viability, HA14-1 markedly enhanced the proapoptotic and phototoxic effects of ER photodamage. These results provide additional evidence that the antiapoptotic properties of Bcl-2 constitute an important determinant of photokilling, and demonstrate that synergistic effects can result when PDT is coupled with pharmacologic suppression of Bcl-2 function.  相似文献   

8.
To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.  相似文献   

9.
A major objective in developing new treatment approaches for lethal tumors is to reduce toxicity to normal tissues while maintaining therapeutic efficacy. Photodynamic therapy (PDT) provides a mechanistically distinct approach to treat tumors without the systemic toxicity of chemotherapy drugs. PDT involves the light‐based activation of a small molecule, a photosensitizer (PS), to generate reactive molecular species (RMS) that are toxic to target tissue. Depending on the PS localization, various cellular and subcellular components can be targeted, causing selective photodamage. It has been shown that targeted lysosomal photodamage followed by, or simultaneous with, mitochondrial photodamage using two different PS results in a considerable enhancement in PDT efficacy. Here, two liposomal formulations of benzoporphyrin derivative (BPD): (1) Visudyne (clinically approved) and (2) an in‐house formulation entrapping a lipid conjugate of BPD are used in combination with direct PS localization to mitochondria, endoplasmic reticulum and lysosomes, enabling simultaneous photodamage to all three organelles using a single wavelength of light. Building on findings by our group, and others, this study demonstrates, for the first time in a 3D model for ovarian cancer, that BPD‐mediated photodestruction of lysosomes and mitochondria/ER significantly enhances PDT efficacy at lower light doses than treatment with either PS formulation alone.  相似文献   

10.
To determine the initial photodamage sites of Foscan-mediated photodynamic treatment, we evaluated the enzymatic activities in selected organelles immediately after light exposure of MCF-7 cells. The measurements indicated that the enzymes located in the Golgi apparatus (uridine 5'-diphosphate galactosyl transferase) and in the endoplasmic reticulum (ER) (nicotinamide adenine dinucleotide [reduced] [NADH] cytochrome c [cyt c] reductase) are inactivated by the treatment, whereas mitochondrial marker enzymes (cyt c oxidase and dehydrogenases) were unaffected. This indicates that the ER and the Golgi apparatus are the primary intracellular sites damaged by Foscan-mediated PDT in MCF-7 cells. We further investigated whether the specific mitochondria events could be associated with Foscan photoinduced cell death. The dose response profiles of mitochondrial depolarization and cytochrome c release immediately after Foscan-based PDT were very different from that of overall cell death. By 24 h post-PDT the fluence dependency was strikingly similar for both mitochondrial alterations and cell death. Therefore, although mitochondria are not directly affected by the treatment, they can be strongly implicated in Foscan-mediated MCF-7 cell death by late and indirect mechanism.  相似文献   

11.
The cationic photosensitizing triaryl methane dye Victoria Blue BO (VBBO) localizes in mitochondria and causes oxidative damage to this organelle during photodynamic therapy (PDT). Oxidative stresses from other photosensitizers induce a variety of stress proteins. The endoplasmic reticulum (ER)-based, calcium-binding stress protein GRP78 is a putative protective factor for photo-sensitizers such as Photofrin® that damage multiple intracellular sites and for several cytotoxic agents. In the current study VBBO-PDT was found to induce glucose-regulated protein (GRP)78. However, in contrast to other drugs, rather than being protected, human squamous carcinoma cells (FaDu) induced to express GRP78 by calcium ionophore A23187 became more sensitive to PDT. A line of Chinese hamster ovary cells (C.-1) constitutively overexpressing GRP78 also were more sensitive. Cytotoxicity of the A23187 treatment and VBBO was synergistic, with more than 11-fold potentiation with light irradiation, but was only additive in the dark. The in-creased cell killing was not due to differences in VBBO uptake or to changes in the intracellular localization of VBBO caused by calcium ionophore or GRP78. Thus, GRP78 appears to enhance rather than protect against VBBO-induced mitochondrial photodamage and contributes to cell death. This novel finding possibly may stem from the effects of GRP78, ER Ca2+ stores and ATP consumption on the Ca2+ and ATP-dependent mitochondrial permeability transition that may be evoked by PDT damage to the mitochondrial respiratory chain. The work suggests interventions that may potentiate PDT with mitochondrial targeting sensitizers and potential enhancements in efficacy when GRP78 is upregulated biologically or pharmacologically.  相似文献   

12.
Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis. The HPV(−) line was considerably less responsive to I/R, with DEVDase activity greatly reduced, suggesting an impaired apoptotic program. In contrast, the HPV(−) cells were readily killed by PDT when the ER was among the targets for photodamage. While DEVDase activity was enhanced, the death pathway appears to involve paraptosis until the degree of photodamage reached the LD99 range. These data suggest that PDT-induced paraptosis can be a death pathway for cells with an impaired apoptotic program.  相似文献   

13.
The flux of receptor-independent endocytosis can be estimated by addition of wortmannin to cell cultures. Membrane influx is unaffected but traffic out of late endosomes is impaired, resulting in a substantial enlargement of these organelles. Using the 1c1c7 murine hepatoma, we investigated the effect of endosomal photodamage on this endocytic pathway. We previously reported that photodamage catalyzed by the lysosomal photosensitizer NPe6 prevented wortmannin-induced endosomal swelling, indicating an earlier block in the process. In this study, we show that endosomal photodamage, initiated by photodamage from an asymmetrically substituted porphine or a phthalocyanine also prevents wortmannin-induced endosomal swelling, even when the photodynamic therapy (PDT) dose is insufficient to cause endosomal disruption. As the PDT dose is increased, endosomal breakage occurs, as does apoptosis and cell death. Very high PDT doses result in necrosis. We propose that photodamage to endosomes results in alterations in the endosomal structure such that influx of new material is inhibited and receptor-independent endocytosis is prevented. In an additional series of studies, we found that the swollen late endosomes induced by wortmannin are unable to retain previously accumulated fluorescent probes or photosensitizers.  相似文献   

14.
SITES OF PHOTODAMAGE in vivo and in vitro BY A CATIONIC PORPHYRIN   总被引:2,自引:1,他引:2  
Abstract— Localization and photodynamic efficacy of a monocationic porphyrin (MCP) were assessed using murine leukemia cells in culture. This sensitizer localized at surface membrane loci and catalyzed selective photodamage to membrane structures. Although both cationic and hydrophobic, this porphyrin was not recognized by the multidrug transporter, which excludes many cationic agents from cells that express multidrug resistance. Photodynamic studies with the murine radiation-induced fibrosarcoma tumor model indicated moderate photosensitization of neoplastic lesions in vivo at 3 h, but not at 24 h after sensitizer administration. Pharmacokinetic studies indicate that plasma levels, not tissue levels were the major determinant of photodynamic therapy (PDT) response. Consistent with this observation, vascular damage and disturbances of tissue perfusion followed PDT. These effects were more pronounced in tumor-bearing skin than in normal skin. The therapeutic response to MCP appeared to be related mainly to secondary, probably vascular, effects.  相似文献   

15.
We previously reported that low‐level lysosomal photodamage enhanced the efficacy of subsequent mitochondrial photodamage, resulting in a substantial promotion of apoptotic cell death. We now extend our analysis of the sequential PDT protocol to include two additional lysosomal‐targeting photosensitizers. These agents, because of enhanced permeability, are more potent than the agent (N‐aspartyl chlorin E6, NPe6) used in the initial study. Addition of the cell‐permeable cysteine protease inhibitor E‐64d and calcium chelator BAPTA‐AM almost completely suppressed sequential PDT‐induced loss of mitochondrial membrane potential and activation of procaspases‐3 and ‐7. These inhibitors did not, however, suppress the proapoptotic effect of a BH3 mimetic or mitochondrial photodamage. Knockdowns of ATG7 or ATG5, proteins normally associated with autophagy, suppressed photodamage induced by the sequential PDT protocol. These effects appear to be independent of the autophagic process as pharmacological inhibition of autophagy offered no such protection. Effects of ATG7 and ATG5 knockdowns may reflect the role that ATG7 plays in regulating lysosome permeability, and the likelihood that a proteolytic fragment of ATG5 amplifies mitochondrial proapoptotic processes. Our results suggest that low‐dose photodamage that sequentially targets lysosomes and mitochondria may offer significant advantages over the use of single photosensitizers.  相似文献   

16.
δ-Aminolevulinic acid (ALA)-induced porphyrin accumulation is widely used in the treatment of cancer, as photodynamic therapy. To clarify the mechanisms of the tumor-preferential accumulation of protoporphyrin, we examined the effect of the expression of heme-biosynthetic and -degradative enzymes on the ALA-induced accumulation of protoporphyrin as well as photodamage. The transient expression of heme-biosynthetic enzymes in HeLa cells caused variations of the ALA-induced accumulation of protoporphyrin. When ALA-treated cells were exposed to white light, the extent of photodamage of the cells was dependent on the accumulation of protoporphyrin. The decrease of the accumulation of protoporphyrin was observed in the cells treated with inducers of heme oxygenase (HO)-1. The ALA-dependent accumulation of protoporphyrin was decreased in HeLa cells by transfection with HO-1 and HO-2 cDNA. Conversely, knockdown of HO-1/-2 with siRNAs enhanced the ALA-induced protoporphyrin accumulation and photodamage. The ALA effect was decreased with HeLa cells expressing mitoferrin-2, a mitochondrial iron transporter, whereas it was enhanced by the mitoferrin-2 siRNA transfection. These results indicated that not only the production of porphyrin intermediates but also the reuse of iron from heme and mitochondrial iron utilization control the ALA-induced accumulation of protoporphyrin in cancerous cells.  相似文献   

17.
Abstract— It was shown that the cationic fluorescence probe rhodamine 123 accumulates in mitochondria of murine L929 fibroblasts and Chinese hamster ovary Kl epithelial cells due to the driving force of both plasma membrane and mitochondrial membrane potentials. Photodynamic treatment of L929 cells with hematoporphyrin derivative resulted in an increased uptake of rhodamine 123 and a diminished uptake of 1,1,3,3,3',3'-hexamethylindocarbocyanine iodide. This indicates a considerably increased mitochondrial membrane potential, which most likely is the result of a direct or secondary inhibition of the ATP-synthetase, and a decreased plasma membrane potential. The oxygen consumption rate and the ATP level decreased due to photodynamic treatment. Post-incubation of L929 cells subsequent to photodynamic treatment revealed that the uptake of rhodamine 123. the ATP content and the oxygen consumption rate were restored. For all parameters similar results were obtained with CHO-K1 cells, with the exception that during post-incubation the intracellular ATP content remained at the level reached after illumination. These results indicate that photodynamically induced disturbance of mitochondrial functions and the ATP level are not crucial for the loss of clonogenicity of L929 cells. In CHO-K1 cells however, the continuously lowered ATP level may have detrimental consequences for cell survival. The photodynamic stimulation of the rhodamine 123 uptake may be a rather general phenomenon. Because rhodamine 123 exhibits a much higher toxicity towards carcinoma cells than towards other cells, a synergistic interaction between this drug and photodynamic therapy (PDT) may be anticipated, if PDT also stimulates mitochondrial rhodamine 123 accumulation in carcinoma in vivo.  相似文献   

18.
The mechanism of cell death by pheophorbide a (Pba) which has been established to be a potential photosensitizer was examined in experimental photodynamic therapy (PDT) on Jurkat cells, a human lymphoid tumor cell line. In 30-60 min after irradiation, Pba treated cells exhibited apoptotic features including membrane blebbing and DNA fragmentation. Pba/PDT caused a rapid release of cytochrome c from mitochondria into the cytosol. Sequentially, activation of caspase-3 and the cleavage of poly ADP-ribose polymerase (PARP) were followed. Meanwhile, no evidence of activation of caspase-8 was indicated in the cells. In experiments with caspase inhibitors, it was found that caspase-3 alone was sufficient initiator for the Pba-induced apoptosis of the cells. Pba specific emission spectra were confirmed in the mitochondrial fraction and the light irradiation caused a rapid change in its membrane potential. Thus, mitochondria were entailed as the crucial targets for Pba as well as a responsible component for the cytochrome c release to initiate apoptotic pathways. Taken together, it was concluded that the mode of Jurkat cell death by Pba/PDT is an apoptosis, which is initiated by mitochondrial cytochrome c release and caspase-3-pathways.  相似文献   

19.
Abstract— The subcellular and, specifically, mitochondrial localization of the photodynamic sensitizers Photofrin and aminolevulinic acid (ALA)-induced protoporphyrin-IX (PpIX) has been investigated in vitro in radiation-induced fibrosarcoma (RIF) tumor cells. Comparisons were made of parental RIF-1 cells and cells (RIF-8A) in which resistance to Photofrin-mediated photodynamic therapy (PDT) had been induced. The effect on the uptake kinetics of Photofrin of coincubation with one of the mitochondria-specific probes 10N-Nonyl acridine orange (NAO) or rhodamine-123 (Rh-123) and vice versa was examined. The subcellular colocalization of Photofrin and PpIX with Rh-123 was determined by double-label confocal fluorescence microscopy. Clonogenic cell survival after ALA-mediated PDT was determined in RIF-1 and RIF-8A cells to investigate cross-resistance with Photofrin-mediated PDT. At long (18 h) Photofrin incubation times, stronger colocalization of Photofrin and Rh-123 was seen in RIF-1 than in RIF-8A cells. Differences between RIF-1 and RIF-8A in the competitive mitochondrial binding of NAO or Rh-123 with Photofrin suggest that the inner mitochondrial membrane is a significant Photofrin binding site. The differences in this binding may account for the PDT resistance in RIF-8A cells. With ALA, the peak accumulations of PpIX occurred at 5 h for both cells, and followed a diffuse cytoplasmic distribution compared to mitochondrial localization at 1 h ALA incubation. There was rapid efflux of PpIX from both RIF-1 and RIF-8A. As with Photofrin, ALA-induced PpIX exhibited weaker mitochondrial localization in RIF-8A than in RIF-1 cells. Clonogenic survival demonstrated cross-resistance to incubation in PpIX but not to ALA-induced PpIX, implying differences in mitochondrial localization and/or binding, depending on the source of the PpIX within the cells.  相似文献   

20.
Abstract— While chloroaluminum phthalocyanine is a highly effective photosensitizer of murine leukemia P388 or L1210 cells, the mode of cell death varies as a function of the PDT dose. When cells were incubated with 0.3 mUM of the sensitizer, a light dose of 45 mJ cm-2 (670 5 nm) yielded a 90% apoptotic cell population within 60 min. The sensitizer localized throughout the cytoplasm and catalyzed both lysosomal and mitochondrial photodamage at this light dose. Higher light doses yielded progressively more membrane photodamage and inhibited the apoptotic response as determined by the examination of Hochst dye HO 33342-IabeIed nuclei, DNA fragmentation on gels and a poly(adenosylribose) polymerase (PARP)-cleavage assay. Pulse-field gel electrophoresis revealed nonspecific DNA degradation to particles 50 kbp at the higher PDT doses but neither PARP cleavage nor apoptotic nuclei  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号