首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Low refractive index polymer materials have been investigated with a view to form the back surface mirror of advanced silicon solar cells. SiOx:H or AlOy SiOx:H polymer films were spun on top of an ultra‐thin (<10 nm) atomic‐layer‐deposited (ALD) Al2O3 layer, itself deposited on low‐resistivity (1 Ω cm) p‐type crystalline silicon wafers. These double‐layer stacks were compared to both ALD Al2O3 single layers and ALD Al2O3/plasma‐enhanced chemical vapour deposited (PECVD) SiNx stacks, in terms of surface passivation, firing stability and rear‐side reflection. Very low surface recombination velocity (SRV) values approaching 3 cm/s were achieved with ALD Al2O3 layers in the 4–8 nm range. Whilst the surface passivation of the single ALD Al2O3 layer is maintained after a standard firing step typical of screen printing metallisation, a harsher firing regime revealed an enhanced thermal stability of the ALD Al2O3/SiOx:H and ALD Al2O3/AlOy SiOx:H stacks. Using simple two‐dimensional optical modelling of rear‐side reflection it is shown that the low refractive index exhibited by SiOx:H and AlOy SiOx:H results in superior optical performance as compared to PECVD SiNx, with gains in photogenerated current of ~0.125 mA/cm2 at a capping thickness of 100 nm. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We measure surface recombination velocities (SRVs) below 10 cm/s on p‐type crystalline silicon wafers passivated by atomic–layer–deposited (ALD) aluminium oxide (Al2O3) films of thickness ≥10 nm. For films thinner than 10 nm the SRV increases with decreasing Al2O3 thickness. For ultrathin Al2O3 layers of 3.6 nm we still attain a SRV < 22 cm/s on 1.5 Ω cm p‐Si and an exceptionally low SRV of 1.8 cm/s on high‐resistivity (200 Ω cm) p‐Si. Ultrathin Al2O3 films are particularly relevant for the implementation into solar cells, as the deposition rate of the ALD process is extremely low compared to the frequently used plasma‐enhanced chemical vapour deposition of silicon nitride (SiNx). Our experiments on silicon wafers passivated with stacks composed of ultrathin Al2O3 and SiNx show that a substantially improved thermal stability during high‐temperature firing at 830 °C is obtained for the Al2O3/SiNx stacks compared to the single‐layer Al2O3 passivation. Al2O3/SiNx stacks are hence ideally suited for the implementation into industrial‐type silicon solar cells where the metal contacts are made by screen‐printing and high‐temperature firing of metal pastes. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
In this work atomic layer deposition of Al2O3 and TiO2 has been used to obtain dielectric stacks for passivation of silicon surfaces. Our experiments on n‐ and p‐type silicon wafers deposited by thin Al2O3/TiO2 stacks show that a considerably improved passivation is obtained compared to the Al2O3 single layer. For Al2O3 films thinner than 20 nm the emitter saturation current density decreases with increasing TiO2 thickness. Especially the passivation of ultrathin (~5 nm) Al2O3 is very effectively enhanced by TiO2 due to a decreased interface defect density as well as an increased fixed negative charge in the stacks. Hence, the thin Al2O3/TiO2 stacks developed in this work can be used as a passivation coating for Si‐based solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Silicon solar cells passivated with Al2O3 require a capping layer that protects the passivation layer from humidity because of sensitivity of Al2O3 to moisture. Al2O3/TiO2 stacks obtained by atomic layer deposition have been known to provide a high level of passivation layers because of their excellent field‐effect passivation. In this work, degradation of this Al2O3/TiO2 stack, when exposed to humidity, is examined, and an attempt is made for a humidity‐resistant encapsulation layer by adding Al2O3/TiO2 nanolaminates that can be deposited in‐situ without breaking vacuum. Placing the nanolaminate on top of the TiO2 and Al2O3 stack is found to lead to almost no degradation even after 10 days of humidity exposure. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as high-k gate dielectric grown on the 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper. The metal-insulation-semiconductor (MIS) capacitors, respectively with different gate dielectric stacks (Al2O3/SiO2, Al2O3, and SiO2) are fabricated and compared with each other. The I-V measurements show that the Al2O3/SiO2 stack has a high breakdown field ( ≥ 12 MV/cm) comparable to SiO2, and a relatively low gate leakage current of 1× 10-7 A/cm2 at electric field of 4 MV/cm comparable to Al2O3. The 1-MHz high frequency C-V measurements exhibit that the Al2O3/SiO2 stack has a smaller positive flat-band voltage shift and hysteresis voltage, indicating less effective charge and slow-trap density near the interface.  相似文献   

8.
Hall mobility and major scattering mechanisms in surface and buried MBE grown strained InGaSb quantum well (QW) MOSFET channels with in‐situ grown Al2O3 gate oxide are analyzed as a function of sheet hole density, top‐barrier thickness and temperature. Mobility dependence on Al0.8Ga0.2Sb top‐barrier thickness shows that the relative contribution of interface‐related scattering is as low as ~30% in the surface QW channel. An InAs top capping layer reduces the interface scattering even further; the sample with 3 nm total top‐barrier thickness demonstrates mobility of 980 cm2/Vs giving sheet resistance of 4.3 kΩ/sq, very close to the minimum QW resistance in the bulk. The mobility–temperature dependences indicate that the interface‐related scattering is dominated by remote Coulomb scattering at hole densities <1 × 1012 cm–2. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We report on low‐temperature photoluminescence (PL) from aluminum oxide (Al2O3)‐passivated c‐Si wafers, which surprisingly exhibits clear signature of the formation of the so‐called electron–hole liquid (EHL), despite the use of excitation powers for which the condensed phase is not usually observed in bulk Si. The elevated incident photon densities achieved with our micro‐PL setup together with the relatively long exciton lifetimes associated with a good quality, indirect band‐gap semiconductor such as our float‐zone c‐Si, are considered the key aspects promoting photogenerated carrier densities above threshold. Interestingly, we observe a good correlation between the intensity of the EHL feature in PL spectra and the passivation performance of the Al2O3 layer annealed at different temperatures. The change in the extension of the sub‐surface space‐charge region that results from the balance between the induced fixed charge in the Al2O3 and the defect states at the alumina/Si interface is at the origin of the observed correlation. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
Using a high throughput, in‐line atmosphere chemical vapor deposition (APCVD) tool, we have synthesized amorphous aluminum oxide (AlOx) films from precursors of trimethyl‐aluminum (TMA) and O2, yielding a maximum deposition 150 nm min–1 per wafer. For p‐type crystalline silicon (c‐Si) wafers, excellent surface passivation was achieved with the APCVD AlOx films, with a best maximum effective surface recombination velocity (Seff,max) of 8 cm/s following a standard industrial firing step. The findings could be attributed to the existence of large negative charge (Qf ≈ –3 × 1012 cm–2) and low interface defect density (Dit ≈ 4 × 1011 eV–1 cm–2) achieved by the films. This data demonstrates a high potential for APCVD AlOx to be used in high efficiency, low cost industrial solar cells. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This value is achieved due to a very low interface trap density of below 1010 eV–1 cm–2 and a fixed charge density of (2–3) × 1012 cm–2. In contrast, plasma ALD‐grown Al2O3 layers only reach carrier lifetimes of about 1 ms. This is mainly caused by a more than 10 times higher density of interface traps, and thus, inferior chemical passivation. The strong influence of the deposition parameters is explained by the limitation of hydrogen transport in Al2O3 during low‐thermal budget annealing. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
The origin behind crystalline silicon surface passivation by Al2O3 films is studied in detail by means of spatially‐resolved electron energy loss spectroscopy. The bonding configurations of Al and O are studied in as‐deposited and annealed Al2O3 films grown on c‐Si substrates by plasma‐assisted and thermal atomic layer deposition. The results confirm the presence of an interfacial SiO2‐like film and demonstrate changes in the ratio between tetrahedrally and octahedrally coordinated Al in the films after annealing. These observations reveal the underlying origin of c‐Si surface passivation by Al2O3. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This work reports an X‐ray absorption near‐edge structure (XANES) spectroscopy study at the Ni K‐edge in the early stages of growth of NiO on non‐ordered SiO2, Al2O3 and MgO thin films substrates. Two different coverages of NiO on the substrates have been studied. The analysis of the XANES region shows that for high coverages (80 Eq‐ML) the spectra are similar to that of bulk NiO, being identical for all substrates. In contrast, for low coverages (1 Eq‐ML) the spectra differ from that of large coverages indicating that the local order around Ni is limited to the first two coordination shells. In addition, the results also suggest the formation of cross‐linking bonds Ni—O—M (M = Si, Al, Mg) at the interface.  相似文献   

14.
This Letter discusses an important difference between positively charged SiO2 and negatively charged Al2O3 rear‐passivated p‐type Si solar cells: their illumination level dependency. For positively charged SiO2 rear‐passivated p‐type Si solar cells, a loss in short circuit current (JSC) and open circuit voltage (VOC) as a function of illumination level is mainly caused by parasitic shunting and a decrease in surface recombination, respectively. Hence, the relative loss in cell conversion efficiency, JSC, and VOC as a function of the illumination level for SiO2 compared to Al2O3 rear‐passivated p‐type Si solar cells has been measured and discussed. Subsequently, an exponential decay fit of the loss in cell efficiency is applied in order to estimate the difference in the energy output for both cell types in three different territories: Belgium (EU), Seattle and Austin (US). The observed trends in the difference in energy output between both cells, as a function of time of the year and region, are as expected and discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A charge trapping memory with 2 nm silicon nanoparticles (Si NPs) is demonstrated. A zinc oxide (ZnO) active layer is deposited by atomic layer deposition (ALD), preceded by Al2O3 which acts as the gate, blocking and tunneling oxide. Spin coating technique is used to deposit Si NPs across the sample between Al2O3 steps. The Si nanoparticle memory exhibits a threshold voltage (Vt) shift of 2.9 V at a negative programming voltage of –10 V indicating that holes are emitted from channel to charge trapping layer. The negligible measured Vt shift without the nanoparticles and the good re‐ tention of charges (>10 years) with Si NPs confirm that the Si NPs act as deep energy states within the bandgap of the Al2O3 layer. In order to determine the mechanism for hole emission, we study the effect of the electric field across the tunnel oxide on the magnitude and trend of the Vt shift. The Vt shift is only achieved at electric fields above 1 MV/cm. This high field indicates that tunneling is the main mechanism. More specifically, phonon‐assisted tunneling (PAT) dominates at electric fields between 1.2 MV/cm < E < 2.1 MV/cm, while Fowler–Nordheim tunneling leads at higher fields (E > 2.1 MV/cm). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The distribution of the phase and chemical composition at an Al2O3/Si interface is studied by depth-resolved ultrasoft x-ray emission spectroscopy. The interface is formed by atomic layer deposition of Al2O3 films of various thicknesses (from several to several nanometers to several hundreds of nanometers) on the Si(100) surface (c-Si) or on a 50-nm-thick SiO2 buffer layer on Si. L 2,3 bands of Al and Si are used for analysis. It is found that the properties of coatings and Al2O3/Si interfaces substantially depend on the thickness of the Al2O3 layer, which is explained by the complicated character of the process kinetics. At a small thickness of coatings (up to 10–30 nm), the Al2O3 layer contains inclusions of oxidized Si atoms, whose concentration increases as the interface is approached. As the thickness increases, a layer containing inclusions of metallic Al clusters forms. A thin interlayer of Si atoms occurring in an unconventional chemical state is found. When the SiO2 buffer layer is used (Al2O3/SiO2/Si), the structure of the interface and the coating becomes more perfect. The Al2O3 layer does not contain inclusions of metallic aluminum, does not vary with the sample thickness, and has a distinguished boundary with silicon.  相似文献   

17.
Temperature-dependent photoluminescence (PL) from Si nanodots with Al2O3 surface passivation layers was studied. The Si nanodots were grown by low pressure chemical vapor deposition and the Al2O3 thin films were prepared by atomic layer deposition (ALD), respectively. The BOE (Buffer-Oxide-Etch) treatment resulted in the damaged surface of Si nanodots and thus caused dramatic reduction in the PL intensity. Significant enhancement of the PL intensity from Si nanodots after the deposition of Al2O3 thin films was observed over a wide temperature range, indicating the remarkable surface passivation effect to suppress the non-radiative recombination at the surface of Si nanodots. The results demonstrated that the Al2O3 surface passivation layers grown by ALD are effectually applicable to nanostructured silicon devices.  相似文献   

18.
Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180–420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

19.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号