首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
Silicon solar cells passivated with Al2O3 require a capping layer that protects the passivation layer from humidity because of sensitivity of Al2O3 to moisture. Al2O3/TiO2 stacks obtained by atomic layer deposition have been known to provide a high level of passivation layers because of their excellent field‐effect passivation. In this work, degradation of this Al2O3/TiO2 stack, when exposed to humidity, is examined, and an attempt is made for a humidity‐resistant encapsulation layer by adding Al2O3/TiO2 nanolaminates that can be deposited in‐situ without breaking vacuum. Placing the nanolaminate on top of the TiO2 and Al2O3 stack is found to lead to almost no degradation even after 10 days of humidity exposure. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
In this work atomic layer deposition of Al2O3 and TiO2 has been used to obtain dielectric stacks for passivation of silicon surfaces. Our experiments on n‐ and p‐type silicon wafers deposited by thin Al2O3/TiO2 stacks show that a considerably improved passivation is obtained compared to the Al2O3 single layer. For Al2O3 films thinner than 20 nm the emitter saturation current density decreases with increasing TiO2 thickness. Especially the passivation of ultrathin (~5 nm) Al2O3 is very effectively enhanced by TiO2 due to a decreased interface defect density as well as an increased fixed negative charge in the stacks. Hence, the thin Al2O3/TiO2 stacks developed in this work can be used as a passivation coating for Si‐based solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Low refractive index polymer materials have been investigated with a view to form the back surface mirror of advanced silicon solar cells. SiOx:H or AlOy SiOx:H polymer films were spun on top of an ultra‐thin (<10 nm) atomic‐layer‐deposited (ALD) Al2O3 layer, itself deposited on low‐resistivity (1 Ω cm) p‐type crystalline silicon wafers. These double‐layer stacks were compared to both ALD Al2O3 single layers and ALD Al2O3/plasma‐enhanced chemical vapour deposited (PECVD) SiNx stacks, in terms of surface passivation, firing stability and rear‐side reflection. Very low surface recombination velocity (SRV) values approaching 3 cm/s were achieved with ALD Al2O3 layers in the 4–8 nm range. Whilst the surface passivation of the single ALD Al2O3 layer is maintained after a standard firing step typical of screen printing metallisation, a harsher firing regime revealed an enhanced thermal stability of the ALD Al2O3/SiOx:H and ALD Al2O3/AlOy SiOx:H stacks. Using simple two‐dimensional optical modelling of rear‐side reflection it is shown that the low refractive index exhibited by SiOx:H and AlOy SiOx:H results in superior optical performance as compared to PECVD SiNx, with gains in photogenerated current of ~0.125 mA/cm2 at a capping thickness of 100 nm. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This value is achieved due to a very low interface trap density of below 1010 eV–1 cm–2 and a fixed charge density of (2–3) × 1012 cm–2. In contrast, plasma ALD‐grown Al2O3 layers only reach carrier lifetimes of about 1 ms. This is mainly caused by a more than 10 times higher density of interface traps, and thus, inferior chemical passivation. The strong influence of the deposition parameters is explained by the limitation of hydrogen transport in Al2O3 during low‐thermal budget annealing. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
The intentional addition of hydrogen during reactive sputtering of AlOx films has led to a dramatic improvement of the surface passivation of crystalline silicon wafers achieved with this technique. The 5 ms effective minority carrier lifetime measured on 1.5 Ω cm n‐type CZ silicon wafers is close to the 6 ms of a control wafer coated by atomic layer deposition (ALD) of AlOx. Hydrogen‐sputtered films also provide excellent passivation of 1 Ω cm p‐type silicon, as demonstrated by an effective lifetime of 1.1 ms. It is likely that the improved passivation is related to the formation of an interfacial silicon oxide layer, as indicated by FTIR measurements. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This Letter discusses an important difference between positively charged SiO2 and negatively charged Al2O3 rear‐passivated p‐type Si solar cells: their illumination level dependency. For positively charged SiO2 rear‐passivated p‐type Si solar cells, a loss in short circuit current (JSC) and open circuit voltage (VOC) as a function of illumination level is mainly caused by parasitic shunting and a decrease in surface recombination, respectively. Hence, the relative loss in cell conversion efficiency, JSC, and VOC as a function of the illumination level for SiO2 compared to Al2O3 rear‐passivated p‐type Si solar cells has been measured and discussed. Subsequently, an exponential decay fit of the loss in cell efficiency is applied in order to estimate the difference in the energy output for both cell types in three different territories: Belgium (EU), Seattle and Austin (US). The observed trends in the difference in energy output between both cells, as a function of time of the year and region, are as expected and discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Ultra‐thin thermally grown SiO2 and atomic‐layer‐deposited (ALD) Al2O3 films are trialled as passivating dielectrics for metal–insulator–semiconductor (MIS) type contacts on top of phosphorus diffused regions applicable to high efficiency silicon solar cells. An investigation of the optimum insulator thickness in terms of contact recombination factor J0_cont and contact resistivity ρc is undertaken on 85 Ω/□ and 103 Ω/□ diffusions. An optimum ALD Al2O3 thickness of ~22 Å produces a J0_cont of ~300 fAcm–2 whilst maintaining a ρc lower than 1 mΩ cm2 for the 103 Ω/□ diffusion. This has the potential to improve the open‐circuit voltage by a maximum 15 mV. The thermally grown SiO2 fails to achieve equivalently low J0_cont values but exhibits greater thermal stability, resulting in slight improvements in ρc when annealed for 10 minutes at 300 °C without significant changes in J0_cont. The after‐anneal J0_cont reaches ~600 fAcm–2 with a ρc of ~2.5 mΩ cm2 for the 85 Ω/□ diffusion amounting to a maximum gain in open‐circuit voltage of 6 mV. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
原子层沉积氧化铝已经成为应用于钝化发射极和背面点接触(PERC)型晶硅太阳能电池优异的钝化材料.对于基于丝网印刷技术的太阳能电池,钝化材料的钝化效果及其热稳定性是非常重要的.本文在太阳能级硅片上用热原子层沉积设备制备了20nm和30nm的氧化铝,少子寿命测试结果显示初始沉积的氧化铝薄膜具有一定的钝化效果,在退火后可达到100μs以上,相当于硅表面复合速度小于100cm/s.经过制备传统晶硅太阳能电池的烧结炉后,少子寿命能够保持在烧结前的一半以上,可应用于工业PERC型电池的制备.通过电子显微镜观察到了较厚的氧化铝薄膜有气泡,解释了30nm氧化铝比20nm氧化铝钝化性能和稳定性更差的异常表现.  相似文献   

12.
张祥  刘邦武  夏洋  李超波  刘杰  沈泽南 《物理学报》2012,61(18):442-450
介绍了A1203的材料性质及其原子层沉积制备方法,详细阐述了该材料的钝化机制(化学钝化和场效应钝化),并从薄膜厚度、热稳定性及叠层钝化等角度阐释其优化方案.概述了Al203钝化在晶体硅太阳电池中的应用,主要包括钝化发射极及背面局部扩散电池和钝化发射极及背表面电池.最后,对A1203钝化工艺的未来研究方向和大规模的工业应用进行了展望.  相似文献   

13.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 ℃ and 500 ℃, while the improvement is quite weak at 600 ℃, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al2O3/Si interface structural change. The Al–OH groups play an important role in chemical passivation, and the Al–OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree.  相似文献   

15.
The low thermal stability of hydrogenated amorphous silicon (a‐Si:H) thin films limits their widespread use for surface passivation of c‐Si wafers on the rear side of solar cells. We show that the thermal stability of a‐Si:H surface passivation is increased significantly by a hydrogen rich a‐Si:H bulk, which acts as a hydrogen reservoir for the a‐Si:H/c‐Si interface. Based on this mechanism, an excellent lifetime of 5.1 ms (at injection level of 1015 cm–3) is achieved after annealing at 450 °C for 10 min. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Herein we report on the passivation of crystalline silicon by gallium oxide (Ga2O3) using oxygen plasma as the oxidizing reactant in an atomic layer deposition (ALD) process. Excess carrier lifetimes of 2.1 ms have been measured on 1.75 Ω cm p‐type silicon, from which a surface recombination current density J0 of 7 fA cm–2 is extracted. From high frequency capacitance‐voltage (HF CV) measurements it is shown that, as in the case of Al2O3, the presence of a high negative charge density Qtot/q of up to –6.2 × 1012 cm–2 is one factor contributing to the passivation of silicon by Ga2O3. Defect densities at midgap on the order of ~5 × 1011 eV–1 cm–2 are extracted from the HF CV data on samples annealed at 300 °C for 30 minutes in a H2/Ar ambient, representing an order of magnitude reduction in the defect density compared to pre‐anneal data. Passivation of a boron‐diffused p+ surface (96 Ω/□) is also demonstrated, resulting in a J0 of 52 fA cm–2. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
Atomic-layer-deposited(ALD) aluminum oxide(Al_2O_3) has demonstrated an excellent surface passivation for crystalline silicon(c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al_2O_3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250℃ given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al_2O_3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al_2O_3 sample is annealed for 15 min in forming gas in a temperature range from 400℃ to 450℃. In addition, the passivation quality can be further improved when a thin PECVD-SiN_x cap layer is prepared on Al_2O_3, and an effective minority carrier lifetime of2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering.  相似文献   

18.
A possible scenario for wafer‐based silicon photovoltaics is the processing of solar modules starting from thin silicon wafers bonded to glass. However, interactions between the adhesive used for bonding and the solar cell processing can affect the surface passivation of the bonded wafer and decrease cell performances. A method that suppresses these interactions and leads to state‐of‐the‐art a‐Si:H surface passivation is presented in this Letter. The method is based on an increase of the surface cross‐linking of a silicone adhesive by means of an O2 plasma and it is successfully tested on three different silicones. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The preparation of high‐quality molybdenum oxide (MoOx) is demonstrated by plasma‐enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 °C. The films are amorphous, slightly substoichiometric with respect to MoO3, and free of other elements apart from hydrogen (&11 at%). The films have a high transparency in the visible region and their compatibility with a‐Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoOx in hole‐selective contacts for silicon heterojunction solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号