首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a model system, thin films of trisilanolphenyl‐POSS (TPP) and two different number average molar mass (5 and 23 kg mol?1) poly(t‐butyl acrylate) (PtBA) were prepared as blends by Langmuir–Blodgett film deposition. Films were characterized by ellipsometry. For comparison, bulk blends are prepared by solution casting and the samples are characterized via differential scanning calorimetry. The increase in Tg as a function of TPP content for bulk high and low molar mass samples are in the order of ~10 °C. Whereas bulk Tg shows comparable increases for both molar masses (~10 °C), the increase in surface Tg for higher molar mass PtBA is greater than for low molar mass (~22 °C vs. ~10 °C). Nonetheless, the total enhancement of Tg is complete by the time 20 wt % TPP is added without further benefit at higher nanofiller loads. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 175–182  相似文献   

2.
To synthesize novel thermally and optically high‐performing thermoplastics from commodity monomers, random styrene (St)‐isoprene (Ip) rubbers (r‐SIRs) prepared by anionic copolymerization were subjected to intramolecular Friedel‐Crafts cyclization and subsequent hydrogenation via a sequence of simple postpolymerization modifications. The CF3SO3H‐catalyzed Friedel‐Crafts alkylation of r‐SIR afforded cyclized r‐SIR (C‐r‐SIR) via the predominant formation of bicyclic tetrahydronaphthyl units to give thermoplastics with a high glass transition temperature (Tg ~130 °C), good mechanical properties, and good transparency. Subsequent hydrogenation of the small amount of remaining C?C double bonds in the uncyclized Ip units and cyclized Ip‐Ip units yielded hydrogenated C‐r‐SIR (HC‐r‐SIR) and increased the degradation temperature by about 15 °C (Td5 ≥ 380 °C). These HC‐r‐SIRs display good flexural moduli and strength, good transparency, and refractive indices similar to those of C‐r‐SIR. The birefringence of HC‐r‐SIR was successfully tuned by adjusting the comonomer content to obtain near‐zero birefringence high‐performance plastics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Copolymerizations of hexafluoroisobutylene (HFIB) with vinyl pentafluorobenzoate (VPFB) and vinyl trifluoroacetate (VTFA) were carried out in bulk using perfluorodibenzoyl peroxide as the radical initiator. The copolymers obtained were characterized by proton and fluorine NMR spectroscopy. The monomer reactivity ratios in the polymerization of HFIB with VPFB were r1 (HFIB) = 0, r2 (VPFB) = 0.373, and r1r2 = 0. The results indicated that these copolymers have alternating structures. Similarly, the copolymers of HFIB and VTFA also showed alternating structures. The films of HFIB‐co‐VPFB were prepared by casting THF solution of polymers. Films obtained were flexible and transparent. The refractive indices of copolymers were 1.4549, 1.4490, and 1.4438 at 532, 633, and 839 nm, respectively. The average Tgs of HFIB‐co‐VTFA and HFIB‐co‐VPFB were 52 and 71 °C, respectively. From these results, the Tg of the hypothetical HFIB homopolymer is postulated to be in between 70 and 90 °C, which may be useful in the assessment of Tgs of HFIB copolymers with other vinyl monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10−13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10−13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10−13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10−13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 75–83, 1998  相似文献   

5.
(tBuC5H4)TiCl2(N=CtBu2) ( 1 ) exhibited remarkable catalytic activities (12,000–43,700 kg‐polymer/mol‐Ti·h) and efficient comonomer incorporation in ethylene copolymerization with tetracyclododecene (TCD) in the presence of methylaluminoxane, and the catalytic activity by 1 increased even at 60 °C. The resultant polymers are high molecular weight amorphous poly(ethylene‐co‐TCD)s (Mn = 5.88–7.03 × 105) with uniform compositions (with high Tg values, 108–203 °C); a linear relationship between Tg values and the TCD contents was observed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2662–2667  相似文献   

6.
The isothermal structural relaxation (densification) of a family of glassy polynorbornene films with high glass transition temperatures (Tg > 613 K) is assessed via spectroscopic ellipsometry. Three polymers were examined: poly(butylnorbornene) (BuNB), poly(hydroxyhexafluoroisopropyl norbornene) (HFANB), and their random copolymer, BuNB‐r‐HFANB. The effective aging rate, β(T), of thick (∼1.2 μm) spun cast films of BuNB‐r‐HFANB is approximately 10−3 over a wide temperature window (0.49 < T/Tg < 0.68). At higher temperatures, these polymers undergo reactions that more dramatically decrease the film thickness, which prohibits erasing the process history by annealing above Tg. The aging rate for thick BuNB‐r‐HFANB films is independent of the casting solvent, which infers that rapid aging is not associated with residual solvent. β (at 373 K) decreases for films thinner than ∼500 nm. However, the isothermal structural relaxation of thin films of BuNB‐r‐HFANB exhibits nonmonotonic temporal evolution in thickness for films thinner than 115 nm film. The thickness after 18 h of aging at 373 K can be greater than the initial thickness. The rapid aging of these polynorbornene films is attributed to the unusual rapid local dynamics of this class of polymers and demonstrates the potential for unexpected structural relaxations in membranes and thin films of high‐Tg polymers that could impact their performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 53–61  相似文献   

7.
Novel cyclic olefin polymers (COPs) derived from bulky cyclic olefin, exo‐1,4,4a,9,9a,10‐hexahydro‐9,10(1′,2′)‐benzeno‐l,4‐methanoanthracene (HBMN), with high glass transition temperature (Tg), excellent thermal stability, high transparency, and improved mechanical performance, have been achieved by ring‐opening metathesis polymerization and subsequent hydrogenation. The “first‐generation Grubbs” catalyst, RuCl2(PCy3)2(CHPh) (Cy = cyclohexyl) ( G1 ), displays very high activity for homo/copolymerization with complete conversion. Homopolymer of the HBMN after complete hydrogenation showed a highest Tg of 223.6 °C. Copolymerization of HBMN with tricyclo[4.3.0.12,5]deca‐3‐ene or 5‐n‐hexylnorbornene was also carried out. These two series of COPs were characterized by gel permeation chromatography, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. The Tg of the resulted COPs linearly increased with HBMN content, which is easily controlled by changing feed ratios. The tensile test indicates that these copolymers have good mechanical performance as all these copolymers show a higher strain at break compared with commercial products (TOPAS®). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2654‐2661  相似文献   

8.
Novel X‐type polyurethane 5 containing 4‐(2′,2′‐dicyanovinyl)‐6‐nitroresorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone, was prepared and characterized. Polyurethane 5 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It shows thermal stability up to 280 °C from thermogravimetric analysis with a glass transition temperature (Tg) obtained from differential scanning calorimetry thermogram of around 120 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1064‐nm fundamental wavelength is around 6.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 5 °C higher than Tg, and there was no SHG decay below 125 °C due to the partial main chain character of the polymer structure, which is acceptable for NLO device applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
1‐{3,4‐Di‐(2‐hydroxyethoxy)phenyl}‐2‐(2‐thiophenyl)ethene (5) was prepared and condensed with terephthaloyl chloride to yield polyester (6). Polymer 6 was reacted with tetracyanoethylene to give a new Y‐type polyester (7) containing 1‐(3,4‐dioxyethoxy)phenyl‐2‐{5‐(2,2,3‐tricyanovinyl)‐2‐thiophenyl)}ethenyl groups as NLO‐chromophores, which are components of the polymer backbones. Polyester 7 is soluble in common organic solvents such as N,N‐dimethylformamide and acetone. Polymer 7 showed a thermal stability up to 300 °C in thermogravimetric analysis with glass transition temperature (Tg) obtained from differential scanning calorimetry near 126 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at the 1560 nm fundamental wavelength was around 6.57 × 10?9 esu. The dipole alignment exhibited high thermal stability up to the Tg, and there was no SHG decay below 125 °C due to the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1911–1919, 2009  相似文献   

10.
A series of novel cyclic olefin copolymers (COCs), including ethylene/tricyclo[4.3.0.12,5]deca‐3‐ene (TDE), ethylene/tricyclo[4.4.0.12,5]undec‐3‐ene (TUE), and ethylene/tricyclo[6.4.0.19,12]tridec‐10‐ene (TTE) copolymers, have been synthesized via effective copolymerizations of ethylene with bulk cyclic olefin comonomers using bis(β‐enaminoketonato) titanium catalysts ( 1a [PhN?C(CH3)CHC(CF3)O]2TiCl2; 1b : [PhN?C(CF3)CHC(Ph)O]2TiCl2). With modified methylaluminoxane as a cocatalyst, both catalysts exhibit high catalytic activities, producing high molecular weight copolymers with high comonomer incorporations and unimodal molecular weight distributions. The microstructures of obtained ethylene/COCs are established by combination of 1H, 13C NMR, 13C DEPT, HSQC 1H? 13C, and 1H? 1H COSY NMR spectra. DSC analyses indicate that the glass transition temperature (Tg) increases with the enhancement of comonomer volume (TDE < TUE < TTE). High Tg value up to 180 °C is easily attained in ethylene/TTE copolymer with the low content of 35.8 mol %. TGA analyses reveal that these copolymers all possess high thermal stability with degradation temperatures (Td) higher than 370 °C in N2 and air. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3144–3152  相似文献   

11.
A series of new polyesters was prepared from terephthaloyl (or isophthaloyl) chloride acid with various cardo bisphenols on solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.49 dL · g−1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, and o‐chlorophenol. The polyesters containing cardo groups including diphenylmethylene, tricyclo[5.2.1.02,6]decyl, tert‐butylcyclohexyl, phenylcyclohexyl, and cyclododecyl groups exhibited better solubility than bisphenol A–based polyesters. These polymers showed glass transition temperatures (Tg's) between 185 °C and 243 °C and decomposition temperatures at 10% weight loss ranging from 406 °C to 472 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4451–4456, 2000  相似文献   

12.
Three arylene difluoride monomers containing phosphine oxide ( 1 ), phosphinic acid ( 2 ), or phosphinate ester ( 3 ) groups were prepared and polymerized with bisphenol A to give novel poly-(arylene ether)s ( 4 , 5 , and 6 ). The polymers obtained had moderate molecular weights (ηinh: 0.14–0.30 dL g−1 in N-methylpyrrolidinone) and glass-transition temperatures (Tg: 102–200 °C), depending on the phosphine group in the main chain. Using bis(4-fluorophenyl)sulfone as a comonomer improved the polymerization to give copolymers with higher solution viscosities. The stoichiometric investigation revealed that 7 mol % excess of fluoride monomer gave the highest molecular weight copolymer 8 with ηinh of 0.78 dL g−1, which had a Tg of 176 °C, a T of 432 °C, and formed a hard film by casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1854–1859, 2001  相似文献   

13.
In this study, we synthesized polyphosphates with reactive pendant chloromethyl groups by an addition reaction of the diglycidyl ether of bisphenol-S (bisphenol-S epoxy, BPSE) with aryl phosphorodichloridates. The polyphosphates obtained were characterized by IR, 1H NMR spectra, elemental analysis, TGA, DSC, X-ray diffraction, and molar mass measurement. The polyaddition proceeded very smoothly in aromatic solvents catalyzed by quaternary ammonium or phosphonium salts such as tetrabutylammonium bromide and tetrabutylphosphonium bromide to produce a polymer having a high molecular weight. Polymer B, containing a bromine atom in the phenyl ring side chain, has the higher Tg value (Tg = 58°C) than the polyphosphate derived from phenoxy dichlorophosphate (PDCP). Polymer A derived from PDCP begins to lose 10% of its mass at 278°C, and the mass percentage remaining at 700°C is 44% under nitrogen. X-ray diffraction patterns revealed that all the subsequent polyphosphates are amorphous. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2365–2369, 1997  相似文献   

14.
15.
A self‐polymerizable quinoxaline monomer (A‐B) has been synthesized and polymerized via aromatic nucleophilic substitution reactions. An isomeric mixture of self‐polymerizable quinoxaline monomers—2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline and 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline—was polymerized in N‐methyl‐2‐pyrrolidinone (NMP) to afford high molecular weight polyphenylquinoxaline (PPQ) with intrinsic viscosities up to 1.91 dL/g and a glass‐transition temperature (Tg) of 251 °C. A series of comonomers was polymerized with A‐B to form PPQ/polysulfone (PS), PPQ/polyetherether ketone (PEEK), and PPQ/polyethersulfone (PES) copolymers. The copolymers readily obtained high intrinsic viscosities when fluorine was displaced in NMP under reflux. However, single‐electron transfer (SET) side reactions, which limit molecular weight, played a more dominant role when chlorine was displaced instead of fluorine. SET side reactions were minimized in the synthesis of PPQ/PS copolymers through mild polymerization conditions in NMP for longer polymerization times. Thus, the Tg's of PES (Tg = 220 °C), PEEK (Tg = 145 °C), and PS (Tg = 195 °C) were raised through the incorporation of quinoxaline units into the polymer. Copolymers with high intrinsic viscosities resulted in all cases, except in the case of PPQ/PEEK copolymers when 4,4′‐dichlorobenzophenone was the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2037–2042, 2001  相似文献   

16.
A novel Y‐type poly[iminocarbonyloxyethyl‐5‐methyl‐4‐{2‐thiazolylazo‐4‐(1,2,2‐tricyanovinyl)}resorcinoxyethyloxycarbonylimino‐(3,3′‐dimethoxy‐4,4′‐biphenylene)] 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute part of the polymer backbone, was prepared and characterized. Polyurethane 4 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It showed a thermal stability up to 250 °C in thermogravimetric analysis thermogram and the glass‐transition temperature (Tg) obtained from differential scanning calorimetry thermogram was around 118 °C. The second harmonic generation coefficient (d33) of poled polymer films at 1560 nm fundamental wavelength was around 8.43 × 10?9 esu. The dipole alignment exhibited a thermal stability even at 12 °C higher than Tg, and there was no SHG decay below 130 °C due to the partial main‐chain character of the polymer structure, which is acceptable for NLO device applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1166–1172, 2010  相似文献   

17.
The radical copolymerization in solution of vinylidene fluoride (VDF; or 1,1‐difluoroethylene) with methyl 1,1‐dihydro‐4,7‐dioxaperfluoro‐5,8‐dimethyl non‐1‐enoate (MDP) initiated by di‐tert‐butyl peroxide is presented. Six copolymerization reactions were investigated with initial [VDF]0/[MDP]0 molar ratios of 35/65 to 80/20. Both of these comonomers copolymerized in this range of copolymerization. Moreover, these comonomers homopolymerized separately under these conditions. The copolymer compositions of these random copolymers were calculated by means of 19F NMR spectroscopy, which allowed the quantification of the respective amounts of each monomeric unit in the copolymers. The Tidwell–Mortimer method was used for the assessment of the reactivity ratios (ri) of both comonomers, which showed a higher incorporation of MDP in the copolymers (rMDP = 2.41 ± 2.28 and rVDF = 0.38 ± 0.21 at 120 °C). The Alfrey–Price Q and e values of the trifluoroallyl monomer MDP were calculated to be 0.024 (from QVDF = 0.008) or 0.046 (from QVDF = 0.015) and 0.70 (vs eVDF = 0.40) or 0.80 (vs eVDF = 0.50), respectively, indicating that MDP was an electron‐accepting monomer. The thermal properties of these fluorinated copolymers were also determined. Except for those containing a high amount of VDF, the copolymers were amorphous. Each showed one glass‐transition temperature (Tg) only, and with known laws of Tg's, Tg of the MDP homopolymer was assessed. It was compared to that obtained from the direct radical homopolymerization of MDP and discussed. Indeed, these two values were close (Tg = ?3 °C). Thermogravimetric analyses were performed, and they showed that the copolymers were rather thermostable because the thermal degradation occurred at 280 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3109–3121, 2003  相似文献   

18.
Symmetric polydisperse (Mw = 23 × 104, Mw/Mn = 2.84) and monodisperse (Mw = 21 × 104, Mw/Mn < 1.05) polystyrene (PS), and asymmetric polydisperse PS/poly(2,6-dimethyl 1,4-phenylene oxide) (PPO) interfaces have been bonded in the vicinity of the glass transition temperature (Tg) of PS. In a lap-shear joint geometry, strength develops in all cases with time to the fourth power, which indicates that it is diffusion controlled. Strength developing at short times at the polydisperse PS/PS interface, at 90°C, is higher than that at the monodisperse interface, at 92°C (at Tg − 13°C in both cases), presumably due to the contribution of the low molecular weight species. The decrease of strength at the PS/PPO interface when the bonding temperature decreases from 113 to 70°C, i.e., from Tg + 10°C to Tg − 33°C of the bulk PS, indicates a high molecular mobility at the surface as compared to that in the bulk, and can be expressed by a classical diffusion equation, which is valid above Tg (of the surface layer). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 567–572, 1998  相似文献   

19.
Novel cyclic olefin polymers (COPs) with excellent transparency and high glass‐transition temperature (Tg) synthesized from bulky norbornene derivative, exo‐1,4,4a,9,9a,10‐hexahydro‐9,10(1',2')‐benzeno‐l,4‐methanoanthracene (HBMN), and cis‐cyclooctene (COE) by ring‐opening metathesis copolymerization utilizing the “first‐generation Grubbs” catalyst, RuCl2(PCy3)2(CHPh), and subsequent hydrogenation was reported herein. To get amorphous copolymers, it was of great importance to control the feed ratios and the polymerization time for gradient copolymerization. All these copolymers showed very high Tgs (141.1–201.2 °C), which varied with the content of HBMN. The films of the gradient copolymers with only one Tg were highly transparent. On the contrary, all the block copolymers synthesized through sequential addition showed two thermal transition temperatures, Tg and melt temperature (Tm), and the films of these block copolymers were opaque. The mechanical performances of the COPs were also investigated. It is the first report that transparent COP could be prepared from bulky norbornene derivative and monocyclic olefin. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3240–3249  相似文献   

20.
The synthesis of perfluoro‐3‐methylene‐2,4‐dioxabicyclo[3,3,0] octane (D), its radical homopolymerization, and copolymerization with fluoroolefins are presented. Fluorodioxolane (D) was synthesized through direct fluorination of the corresponding hydrocarbon precursor in a fluorinated solvent by F2/N2 gas. It was polymerized in bulk using perfluorodibenzoyl peroxide as the initiator. The resulting homopolymer had a limited solubility in fluorinated solvents, and its glass transition temperature (Tg) was in the range of 180–190 °C. The polymeric films prepared by casting from hot hexafluorobenzene (HFB) solution were transparent with low refractive index (1.329 at 633 nm). These films were thermally stable (Td > 350 °C), and were hard and brittle. The copolymers of monomer (D) were prepared with fluorovinyl monomers such as chlorotrifluoroethylene (CTFE), perfluoropropyl vinyl ether, perfluoromethyl vinyl ether, and vinylidene fluoride. The kinetics of radical copolymerization of monomer (D) with CTFE led to the assessment of the reactivity ratios of both comonomers: rD = 3.635 and rCTFE = 0.737 at 74 °C, respectively. The copolymers obtained were soluble in HFB and perfluoro‐2‐butyltetrahydrofuran, with Tg in the range of 84–145 °C depending on the copolymer composition. The films of the copolymers were flexible and clear with a low refractive index (1.3350–1.3770 at 532 nm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6571–6578, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号