共查询到20条相似文献,搜索用时 15 毫秒
1.
Ji‐Qian Wu Li Pan San‐Rong Liu Li‐Peng He Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(14):3573-3582
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009 相似文献
2.
Li‐Ming Tang Yi‐Qun Duan Li Pan Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2005,43(8):1681-1689
The copolymerizations of ethylene and cyclopentene with bis(β‐enaminoketonato) titanium complexes {[(Ph)NC(R2)CHC(R1)O]2TiCl2; R1 = CF3 and R2 = CH3 for 1a , R1 = Ph and R2 = CF3 for 1b ; and R1 = t‐Bu and R2 = CF3 for 1c } activated with modified methylaluminoxane (MMAO) as a cocatalyst were investigated. High‐molecular‐weight copolymers with cis‐1,2‐cyclopentene units were obtained. The catalyst activity, cyclopentene incorporation, polymer molecular weight, and polydispersity could be controlled over a wide range through the variation of the catalyst structure and reaction parameters, such as the Al/Ti molar ratio, cyclopentene feed concentration, and polymerization reaction temperature. The complex 1b /MMAO catalyst system exhibited the characteristics of a quasi‐living ethylene polymerization and an ethylene–cyclopentene copolymerization and allowed the synthesis of polyethylene‐block‐poly(ethylene‐co‐cyclopentene) diblock copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1681–1689, 2005 相似文献
3.
Li‐Ming Tang Yan‐Guo Li Wei‐Ping Ye Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5846-5854
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006 相似文献
4.
Li‐Ming Tang Tao Hu Li Pan Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6323-6330
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005 相似文献
5.
Miao Hong Guo‐Fan Yang Ying‐Yun Long Shijun Yu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(15):3144-3152
A series of novel cyclic olefin copolymers (COCs), including ethylene/tricyclo[4.3.0.12,5]deca‐3‐ene (TDE), ethylene/tricyclo[4.4.0.12,5]undec‐3‐ene (TUE), and ethylene/tricyclo[6.4.0.19,12]tridec‐10‐ene (TTE) copolymers, have been synthesized via effective copolymerizations of ethylene with bulk cyclic olefin comonomers using bis(β‐enaminoketonato) titanium catalysts ( 1a [PhN?C(CH3)CHC(CF3)O]2TiCl2; 1b : [PhN?C(CF3)CHC(Ph)O]2TiCl2). With modified methylaluminoxane as a cocatalyst, both catalysts exhibit high catalytic activities, producing high molecular weight copolymers with high comonomer incorporations and unimodal molecular weight distributions. The microstructures of obtained ethylene/COCs are established by combination of 1H, 13C NMR, 13C DEPT, HSQC 1H? 13C, and 1H? 1H COSY NMR spectra. DSC analyses indicate that the glass transition temperature (Tg) increases with the enhancement of comonomer volume (TDE < TUE < TTE). High Tg value up to 180 °C is easily attained in ethylene/TTE copolymer with the low content of 35.8 mol %. TGA analyses reveal that these copolymers all possess high thermal stability with degradation temperatures (Td) higher than 370 °C in N2 and air. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3144–3152 相似文献
6.
A Bis(phenoxy‐imine)Zr Complex for Ultrahigh‐Molecular‐Weight Amorphous Ethylene/Propylene Copolymer
Seiichi Ishii Junji Saito Sadahiko Matsuura Yasuhiko Suzuki Rieko Furuyama Makoto Mitani Takashi Nakano Norio Kashiwa Terunori Fujita 《Macromolecular rapid communications》2002,23(12):693-697
A new bis(phenoxy‐imine)Zr complex has been developed. This complex in conjunction with iBu3Al/Ph3CB(C6F5)4 at 70°C produces ultrahigh‐molecular‐weight amorphous ethylene/propylene copolymer with a weight‐average molecular weight of 10 200 000 g/mol versus polystyrene standards, which represents the highest molecular weight known for linear, synthetic copolymers to date. 相似文献
7.
Carmine Capacchione Daniela Saviello Antonietta Avagliano Antonio Proto 《Journal of polymer science. Part A, Polymer chemistry》2010,48(19):4200-4206
Copolymerization of ethylene with isoprene (IP) catalyzed by 1,4‐dithabutanediyl‐linked bis(phenolato) titanium complexes 1 and 2 and methylaluminoxane (MAO) produced exclusively ethylene‐IP copolymers with good activity. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with IP content ~60%. The copolymer microstructure was fully elucidated by 13C‐NMR spectroscopy of the copolymers with various IP content revealing a strong tendency to the alternating microstructure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4200–4206, 2010 相似文献
8.
Sen‐Wang Zhang Ling‐Pan Lu Ying‐Yun Long Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(24):5298-5306
A series of novel vanadium(III) complexes bearing bidentate phenoxy‐phosphine oxide [O,P=O] ligands, (2‐R1‐4‐R2‐6‐Ph2P=O‐C6H2O)VCl2(THF)2 ( 2a : R1 = R2 = H; 2b : R1 = F, R2 = H; 2c : R1 = tBu, R2 = H; 2d : R1 = Ph, R2 = H; 2e : R1 = R2 = Me; 2f : R1 = R2 = tBu; 2g : R1 = R2 = CMe2Ph) have been synthesized by adding 1 equiv of the ligand to VCl3(THF)3 dropwise in the presence of excess triethylamine. Under the same conditions, the adding of VCl3(THF)3 to 2.0 equiv of the ligand afforded vanadium(III) complexes bearing two [O,P=O] ligands ( 3c , 3f ). All the complexes were characterized by FTIR and mass spectra as well as elemental analysis. Structures of complexes 2c and 3c were further confirmed by X‐ray crystallographic analysis. On activation with Et2AlCl and ethyl trichloroacetate, these complexes displayed high catalytic activities for ethylene polymerization (up to 26.4 kg PE/mmolV·h·bar) even at high reaction temperature (70 °C) indicative of high thermal stability, and produced high molecular weight polymers with unimodal molecular weight distributions. Additionally, the complexes with optimized structure exhibited high catalytic activities for ethylene/1‐hexene copolymerization. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled in a wide range via the variation of catalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and reaction temperature. The monomer reactivity ratios rE and rH were determined according to 13C NMR spectra, which indicated these complexes preferred ethylene to 1‐hexene in the copolymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5298–5306 相似文献
9.
Jang‐Woo Lee Sasiradee Jantasee Bunjerd Jongsomsjit Ryo Tanaka Yuushou Nakayama Takeshi Shiono 《Journal of polymer science. Part A, Polymer chemistry》2013,51(23):5085-5090
Norbornene copolymers functionalized with methyl ester group or carboxy group are facilely synthesized by the copolymerization of norbornene and 7‐octenyldiisobutylaluminum (ODIBA) with ansa‐dimethylsilylene(fluorenyl)(t‐butylamido)dimethyltitanium ( 1 ) activated by Ph3CB(C6F5)4, and the sequential CO2/methanolysis reactions or CO2/hydrolysis reactions, respectively. The methanolysis and the hydrolysis are simply switched by engaging acidic methanol or acidic aqueous acetone as the quenching/washing solution, respectively. Meanwhile, the increase of ODIBA in the copolymerization abruptly decreases the yield and number–average molecular weight (Mn) of the product. However, the addition of triisobutylaluminum (8 mM) and the use of excess Ph3CB(C6F5)4 (twofold of 0.4 mM of 1 ) significantly increase the yield, accompanying the increase in the Mn and the narrowing of the molecular weight distribution (Mw/Mn), especially in the case of the use of excess Ph3CB(C6F5)4. The yield (g polymer/g monomers), Mn, and Mw/Mn reach up to 0.82, 341,000, and 1.46, respectively, at a copolymerization condition. The carboxy groups in the norbornene copolymers are controlled in the range of 0–1.8 mol % in high polymer yields with high Mn and narrow Mw/Mn accompanied by the decrease in the contact angle with water from 104° to 89°. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5085–5090 相似文献
10.
Sen‐Wang Zhang Gui‐Bao Zhang Ling‐Pan Lu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(4):844-854
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
11.
Lorella Izzo Arto J. Puranen Timo Repo Leone Oliva 《Journal of polymer science. Part A, Polymer chemistry》2006,44(11):3551-3555
C1‐symmetric diastereoisomers of a zirconocene dichloride, SiMe2(3‐benzylindenyl)(indenyl)ZrCl2, known as catalyst precursors used to produce polypropylenes with similar molecular weights and tacticities, have been investigated in ethylene polymerization. Activated by methylaluminoxane, they produce microstructurally different polymers: high‐density polyethylene and linear low‐density polyethylene, the latter characterized by the presence of ethyl branches. The formation of branches is relevant in the complex having a sterically more crowded (inward) site. A comparison with the complex without substituents, meso‐SiMe2(indenyl)2ZrCl2, shows that the presence of a benzyl group on only one of the two indenyl moieties can regulate the number of branches and the molecular weight of the macromolecule. Actually, the unsubstituted complex is able to give double the number of branches and lower molecular weights, whereas the C1‐symmetric disubstituted complexes previously reported generally give linear polyethylene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3551–3555, 2006 相似文献
12.
Xuejing Zheng Makarand S. Pimplapure Günter Weickert Joachim Loos 《Macromolecular rapid communications》2006,27(1):15-20
Summary: A morphological investigation was carried out on different Ziegler‐Natta catalysts during the early stages of propylene homo‐ and propylene‐ethylene copolymerization. For similar polymerization conditions, but dependent on the nature of the catalysts, fragmentation occurs layer‐by‐layer or instantaneously into a large amount of small pieces. However, the incorporation of comonomer ethylene slows down the fragmentation progress. This is believed to be the result of the higher mobility of the just formed propylene‐ethylene copolymer molecules at the active sites.
SEM images of the cross‐sectional morphology of polymer particles from catalyst‐I. 相似文献
13.
Sukhdeep Kaur Gurmeet Singh Virendra K. Gupta 《Journal of polymer science. Part A, Polymer chemistry》2008,46(22):7299-7309
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008 相似文献
14.
Elena Colamarco Stefano Milione Cinzia Cuomo Alfonso Grassi 《Macromolecular rapid communications》2004,25(2):450-454
Summary: The bis(imino)pyridyl vanadium(III ) complex [VCl3{2,6‐bis[(2,6‐iPr2C6H3)NC(Me)]2(C5H3N)}] activated with different aluminium cocatalysts (AlEt2Cl, Al2Et3Cl3, MAO) promotes chemoselective 1,4‐polymerization of butadiene with activity values higher than classical vanadium‐chloride‐based catalysts. The polymer structure depends on the nature of the cocatalyst employed. The MAO‐activated complex was also found to be active in ethylene‐butadiene copolymerization, producing copolymers with up to 45 mol‐% of trans‐1,4‐butadiene. Crystalline polyethylene and trans‐1,4‐poly(butadiene) segments were detected in these copolymers by DSC and 13C NMR spectroscopy.
15.
Li‐Ming Tang Ji‐Qian Wu Yi‐Qun Duan Li Pan Yan‐Guo Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2008,46(6):2038-2048
Five novel vanadium(III) complexes [PhN = C(R2)CHC(R1)O]VCl2(THF)2 ( 4a : R1 = Ph, R2 = CF3; 4b : R1 = t‐Bu, R2 = CF3; 4c : R1 = CF3, R2 = CH3; 4d : R1 = Ph, R2 = CH3; 4e : R1 = Ph, R2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolV h bar and weight‐average molecular weights higher than 173 kg/mol were observed under mild conditions. The copolymerizations of ethylene and norbornene or 1‐hexene with the precatalysts were also explored, which leads to high molecular weight copolymers with high comonomer incorporation. Catalyst activity, comonomer incorporation, and polymer molecular weight as well as polydispersity index can be controlled over a wide range by the variation of precatalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2038–2048, 2008 相似文献
16.
Ying‐Yun Long Yong‐Xia Wang Bai‐Xiang Li Yan‐Guo Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2017,55(17):2787-2797
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797 相似文献
17.
Vincenzo Busico Roberta Cipullo Sara Ronca Peter H. M. Budzelaar 《Macromolecular rapid communications》2001,22(17):1405-1410
Results of propene polymerization in the presence of two known octahedral C2‐symmetric Zr complexes bearing tetradentate [ONNO]‐type ligands are reported for the first time. Depending on the steric hindrance at the active metal, isotactic site‐controlled or weakly syndiotactic chain‐end‐controlled polymers were obtained, in both cases via highly regioselective 1,2 (primary) monomer insertion. In this respect, the complexes mimic the behavior of the active Ti species on the surface of the heterogeneous Ziegler‐Natta catalysts of which they might represent good structural models. 相似文献
18.
Ying‐Yun Long Wei‐Ping Ye XIN‐CUI SHI Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(22):6072-6082
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009 相似文献
19.
Carmine Capacchione Antonio Proto Jun Okuda 《Journal of polymer science. Part A, Polymer chemistry》2004,42(11):2815-2822
The synthesis of branched polyethylene from single ethylene feed has been achieved by using a methylaluminoxane‐activated titanium complex bearing a tetradentate bis(phenolate) ligand with a 1,4‐dithiabutanediyl bridge 1 . This catalyst produces polyethylene with activities up to 6200 kg polymer/mol h bar. As evidenced by 13C NMR analyses, the polyethylenes contain ethyl, n‐butyl, and long‐chain (n‐hexyl or longer) branches in a range variable from 0.2 to 2.0%, depending on the experimental parameters. NMR and gas chromatography/mass spectrometry analyses suggest that such polymer microstructure arises from the in situ production of oligomers and their subsequent incorporation into the growing polyethylene chain. The broad molecular weight distribution of these polyethylenes indicates the presence of different catalytic species. The related catalyst system 2 bearing a longer 1,5‐dithiapentanediyl bridge produces linear polyethylene with moderate activity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2815–2822, 2004 相似文献
20.
Jürgen Schellenberg 《Journal of polymer science. Part A, Polymer chemistry》2005,43(10):2061-2067
The effect of the kind of transition‐metal catalyst on the extent of comonomer insertion in the syndiospecific complex‐coordinative copolymerization of styrene and para‐methylstyrene has been investigated. The results for the influence of the polymerization conditions have shown that there is no real difference between solution copolymerization in toluene and solvent‐free styrene copolymerization in bulk, with respect to the reactivity ratio for para‐methylstyrene (r2), under comparable conditions in the presence of methylaluminoxane and triisobutylaluminum and at low polymerization conversions. All the investigated catalysts lead to a preferred incorporation of para‐methylstyrene into the polymer chain in comparison with styrene and over the whole range of monomer compositions. The increasing capability of the different catalysts to provide copolymers with enhanced para‐methylstyrene concentrations can be summarized by the increasing r2 values for the copolymerization in bulk as follows: η5‐pentamethylcyclopentadienyl titanium trichloride < η5‐octahydrofluorenyl titanium trimethoxide < η5‐octahydrofluorenyl titanium tristrifluoroacetate < η5‐cyclopentadienyl titanium(N,N‐dicyclohexylamido)dichloride < η5‐cyclopentadienyl titanium trichloride. For a correlation between the catalyst structure and the comonomer insertion, the catalysts can be described by electronic effects (electrostatic charge of the transition‐metal atom) and steric effects (minimum structural cone angle). The results show that the steric properties of the transition‐metal complexes have the most important effect on the insertion of para‐methylstyrene into the copolymer. If the minimum structural cone angle of the ligand of the transition‐metal catalyst decreases, the incorporation of the comonomer para‐methylstyrene increases significantly. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2061–2067, 2005 相似文献