首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyaniline (PANI)/poly(2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS) semi‐interpenetrating network polymers (semi‐IPNs) were prepared using the simultaneous method. The formation and properties of the interpenetrating PANI/PAMPS semi‐IPNs were investigated using Fourier transform infrared spectroscopy, X‐ray diffraction, solid‐state 13C‐NMR, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The interaction of PAMPS with PANI as a polymeric acid dopant was also investigated. These semi‐IPNs had a different microstructure compared to that of pure PANI. Packing structures and several decomposition steps were ordered for each semi‐IPN, while pure PANI exhibits a single amorphous peak and one decomposition step. The NMR spectra show that these peaks broaden and shifted downfield in the semi‐IPNs. A thermal reaction between PANI and PAMPS was observed using DSC and TGA, and the data from the two techniques are in agreement.  相似文献   

2.
Polymers consisting of poly(acrylic acid) (PAA) and statistical poly[(acrylic acid)‐co‐(tert‐butylacrylate)] (P(AA‐cotBA)), attached to both extremities of Jeffamine® (D series based on a poly(propylene oxide) (PPO) with one amine function at each end) using atom transfer radical polymerization (ATRP) are presented in this article. An original bifunctional amide‐based macroinitiator was first elaborated from Jeffamine®. tBA polymerization was subsequently initiated from this macroinitiator. This polymerization occurs in a well‐controlled manner leading to narrow molecular weights distribution. Amphiphilic copolymers were finally obtained after complete or partial hydrolysis of the PtBA blocks into PAA. The control of the partial hydrolysis of tBA units, conducted in a concentrated HCl/tetrahydrofuran mixture, is demonstrated. The properties of the triblock copolymers were preliminary investigated in aqueous solution by absorbance, DLS measurements and SEC/MALS/DV/DRI analysis as a function of temperature and pH modifications, providing evidences of thermo‐ and pH‐sensitive self‐assembly of the copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2606–2616  相似文献   

3.
The competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solutions by the copolymer of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and itaconic acid (IA), P(AMPS‐co‐IA), was investigated. Homopolymer of AMPS (PAMPS) was also used to remove these ions from their aqueous solution. In the preparation of AMPS–IA copolymer, the molar percentages of AMPS and IA were 80 and 20, respectively. In order to observe the changes in the structures of polymers due to metal adsorption, FTIR spectra by attenuated total reflectancetechnique and scanning electron microscopy (SEM) pictures of the polymers were taken both before and after adsorption experiments. Total metal ion removal capacities of PAMPS and P(AMPS‐co‐IA) were 1.685 and 1.722 mmol Me2+/gpolymer, respectively. Experimental data were evaluated to determine the kinetic characteristics of the adsorption process. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions onto both PAMPS and P(AMPS‐co‐IA) was found to fit pseudo‐second‐order type kinetics. In addition, the removal orders in the competitive adsorption of these metal ions onto PAMPS and P(AMPS‐co‐IA) were found to be Cd2+ > Pb2+ > Cu2+ and Pb2+ > Cd2+ > Cu2+, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The anionic polymerization of 2‐vinylnaphthalene (2VN) has been studied in tetrahydrofuran (THF) at ?78 °C and in toluene at 40 °C. 2VN polymerization in THF, toluene, or toluene/THF (99:1 v/v) initiated by sec‐butyllithium (sBuLi) indicates living characteristics, affording polymers with predefined molecular weights and narrow molecular weight distributions. Block copolymers of 2VN with methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) have been synthesized successfully by sequential monomer addition in THF at ?78 °C initiated by an adduct of sBuLi–LiCl. The crossover propagation from poly(2‐vinylnaphthyllithium) (P2VN) macroanions to MMA and tBA appears to be living, the molecular weight and composition can be predicted, and the molecular weight distribution of the resulting block copolymer is narrow (weight‐average molecular/number‐average molecular weight < 1.3). Block copolymers with different chain lengths for the P2VN segment can easily be prepared by variations in the monomer ratios. The block copolymerization of 2VN with hexamethylcyclotrisiloxane also results in a block copolymer of P2VN and poly(dimethylsiloxane) (PDMS) contaminated with a significant amount of homo‐PDMS. Poly(2VN‐b‐nBA) (where nBA is n‐butyl acrylate) has also been prepared by the transesterification reaction of the poly(2VN‐b‐tBA) block copolymer. Size exclusion chromatography, Fourier transform infrared, and 1H NMR measurements indicate that the resulting polymers have the required architecture. The corresponding amphiphilic block copolymer of poly(2VN‐b‐AA) (where AA is acrylic acid) has been synthesized by acidic hydrolysis of the ester group of tert‐butyl from the poly(2VN‐b‐tBA) copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4387–4397, 2002  相似文献   

5.
Poly(N‐vinyl‐pyrrolidone) (PVP) hydrogel has been considered as a very interesting and promising thermosensitive material. The most vital shortcoming of PVP hydrogel as thermosensitive material is that it does not exhibit thermosensitivity under usual conditions. In this work, semi‐interpenetrating polymer network (semi‐IPN) hydrogels based on PVP and carboxymethylcellulose (CMC) were prepared. The volume phase transition temperature (VPTT) of the hydrogels was determined by swelling behavior and differential scanning calorimetry (DSC). The results showed that the VPTT was significantly dependent on CMC content and the pH of the swelling medium. The amount of CMC in the semi‐IPN hydrogels was 0.050, 0.075, and 0.100 g, the VPTT in buffer solution of pH 1.2 was 29.9 °C, 27.5 °C and 24.5 °C, respectively. In addition, the VPTT occurred in buffer solution of pH 1.2, but did not appear in alkaline medium. Bovine serum albumin (BSA) as a model drug was loaded and the in vitro release studies were carried out in different buffer solutions and at different temperatures. The results of this study suggest that PVP/CMC semi‐IPN hydrogels could serve as potential candidates for protein drug delivery in the intestine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1749–1756, 2010  相似文献   

6.
pH‐Responsive polymers have great potential in biomedical applications, including the selective delivery of preloaded drugs to tissues with low pH values. These polymers usually contain acid‐labile linkages such as esters and acetals/ketals. However, these linkages are only mildly pH‐responsive with relatively long half‐lives (t1/2). Orthoester linkages are more acid‐labile, but current methods suffer from synthetic challenges and are limited to the availability of monomers. To address these limitations, a sugar poly(orthoester) was synthesized as a highly pH‐responsive polymer. The synthesis was achieved by using 2,3,4‐tri‐O‐acetyl‐α‐D ‐glucopyranosyl bromide as a difunctional AB monomer and tetra‐n‐butylammonium iodide (TBAI) as an effective promoter. Under optimal conditions, polymers with molecular weights of 6.9 kDa were synthesized in a polycondensation manner. The synthesized glucose poly(orthoester), wherein all sugar units were connected through orthoester linkages, was highly pH‐responsive with a half‐life of 0.9, 0.6, and 0.2 hours at pH 6, 5, and 4, respectively.  相似文献   

7.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

8.
Proton transfer reactions under anhydrous conditions have attracted remarkable interest due to chemical energy conversions in polymer electrolyte membrane fuel cells. In this work, 1H‐1,2,4‐triazole (Tri) was used as a proton solvent in different polymer host matrices such as Poly(vinylphosphonic acid) (PVPA), and poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) (PAMPS). PVPATrix and PAMPSTrix electrolytes were investigated where x is the molar ratio of Tri to corresponding polymer repeat unit. The interaction between polymer and Tri was studied via FTIR spectroscopy. Thermogravimetry analysis and differential scanning calorimetry were employed to examine the thermal stability and homogeneity of the materials, respectively. PVPATri1.5 showed a maximum water‐free proton conductivity of 2.3 × 10?3 S/cm at 120 °C and that of PAMPSTri2 was 9.3 × 10?4 S/cm at 140 °C. The results were interpreted in terms of different acidic functional groups and composition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3315–3322, 2006  相似文献   

9.
Aqueous solution properties of amphiphilic P(AA‐cotBA)‐b‐PPO‐b‐ P(AA‐cotBA) copolymers having various tBA contents are presented in this article. These copolymers show pH‐sensitive behavior depending on tBA/AA ratio. Hydrophobic interactions between tBA units leading to pH‐dependent macroscopic aggregates were evidenced by turbidimetry. The aggregation behavior of the PPO middle block was concealed in presence of tBA units. The formation of water‐soluble aggregated objects was characterized by Asymmetrical Flow Field Flow Fractionation (AsF4). By increasing tBA/AA ratio, we observed an increase of aggregates size as well as a reduction of the critical concentration aggregation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1944–1949  相似文献   

10.
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

11.
N‐Isopropylacrylamide/itaconic acid copolymeric hydrogels were prepared by irradiation of the ternary mixtures of N‐isopropylacrylamide/itaconic acid/water by γ‐rays at ambient temperature. The dependence of swelling properties and phase transitions on the comonomer concentration and temperature were investigated. The hydrogels showed both temperature and pH responses. The effect of comonomer concentration on the uptake and release behavior of the hydrogels was studied. Methylene blue (MB) was used as a model drug for the investigation of drug uptake and release behavior of the hydrogels. The release studies showed that the basic parameters affecting the drug release behavior of the hydrogels were pH and temperature of the solution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

13.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of pH and the ligand nature over the atom transfer radical polymerization (ATRP) of the anionic monomer sodium 2‐acrylamido‐2‐methylpropanesulfonate (AMPSNa) was investigated in aqueous medium by using ω‐halogenated poly(ethylene oxide) and CuBr, as macroinitiator and catalyst, respectively. The stability of both catalytic complexes and macroinitiator was investigated in function of pH, that is, fixed between 7.5 and 12. UV‐VIS spectroscopy confirmed a good catalytic complex stability in the studied conditions. Hydrolysis of the macroinitiator ester group at pH higher than 7.5 was detected by 1H NMR and GPC, yielding ill‐defined polymer samples when ATRP is performed in alkaline conditions. 2,2′‐Bipyridyl (Bpy), 1,1,4,7,10,10‐hexamethyltriethylenetetramine (HMTETA), and tris(2‐methylaminoethyl)amine (Me6‐TREN)‐based complexes were compared at the optimal pH (pH 7.5). When polymerization was carried out in the presence of CuBr · 2Me6‐TREN complex block copolymers with narrow molecular weight distribution (1.1 ≤ M W/M n ≤ 1.3), and good agreement between theoretical and experimental molar masses was obtained. Moreover, increasing the PAMPSNa polymerization degrees (n) did not affect the control over the polymerization. Preliminary characterization of the diblock copolymers behavior in aqueous medium revealed a strong polyelectrolyte effect independently of n. Interestingly, occurrence of interactions between the PEO and PAMPSNa‐blocks was also evidenced by differential scanning calorimetry and thermogravimetric analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1108–1119, 2009  相似文献   

15.
4‐Fluorophenylsulfonylphenyl‐terminated polysulfone and 4‐fluorobenzoylphenyl ketone were prepared with bisphenol A and an excess of bis‐(4‐fluorophenyl)sulfone or 4,4′‐difluorobenzophenone, respectively, at 160 °C using potassium carbonate in N,N‐dimethylacetamide. The resulting polymers were reacted with 4‐hydroxystyrene to synthesize vinyl‐terminated polysulfones and ketones. The silicon‐containing polysulfones and ketones were prepared from the vinyl‐terminated polymer precursor and various H‐functional silanes or siloxanes. The synthesis of silicon‐containing polymers was achieved by hydrosilation with a rhodium catalyst. It was shown that the hydrosilation reaction proceeds with 55:45 chemoselectivity. The resulting polymers were investigated by 1H NMR spectroscopy, DSC, and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2937–2942, 2001  相似文献   

16.
17.
The synthesis of statistical copolymers consisting of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐“soy alkyl”‐2‐oxazoline (SoyOx) via a microwave‐assisted cationic ring‐opening polymerization procedure is described. The majority of the resulting copolymers revealed polydispersity indices below 1.30. The reactivity ratios (rEtOx 1.4 ± 0.3; rSoyOx = 1.7 ± 0.3) revealed a clustered monomer distribution throughout the polymer chains. The thermal and surface properties of the pEtOx‐stat‐SoyOx copolymers were analyzed before and after UV‐curing demonstrating the decreased chain mobility after cross‐linking. In addition, the cross‐linked materials showed shape‐persistent swelling upon absorption of water from the air, whereby as little as 5 mol % SoyOx was found to provide efficient cross‐linking. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5371,–5379, 2007  相似文献   

18.
New star‐shaped and photocrosslinked poly(1,5‐dioxepan‐2‐one) (PDXO) has been synthesized through ring‐opening polymerization initiated by SnOct2/pentaerythritol. The star‐shaped PDXO was end‐functionalized by acrolyol chloride to form acrylate end groups. The end‐functionalized PDXO was photocrosslinked initiated by 2,2‐dimethoxy‐2‐phenylacetophenone. The gel content ranged from 80 to 99%, indicating a high degree of crosslinking. The thermal properties of the star‐shaped PDXO and the photocrosslinked PDXO were analyzed by differential scanning calorimetry. The glass‐transition temperature was determined to approximately ?32 °C for the crosslinked PDXO. The viscosity numbers were determined for star‐shaped PDXO, with reference to linear homologues. The star‐shaped PDXO had lower viscosity numbers than the linear counterparts. The crosslinked PDXO showed a rather hydrophilic surface as compared with other resorbable polyesters. The advancing contact angle was 64 ± 2, and the receding angle was 57 ± 4. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2049–2054, 2002  相似文献   

19.
Amphiphilic diblock copolymers of polystyrene (PS) and poly(N‐vinylpyrrolidone) (PNVP) were prepared by a combination of ATRP and MADIX. Well‐defined PS with bromine end group was synthesized by ATRP in bulk at 110 °C using (1‐bromoethyl) benzene as an initiator. The Br‐ end group was then converted to xanthate as verified by 1H NMR spectroscopy, elemental analysis, and UV‐spectroscopy. PS‐b‐PNVP copolymers were produced by MADIX of NVP in bulk at 60 °C using PS‐xanthate as a macro‐chain transfer agent and the kinetics of polymerization were investigated. The structures of PS‐b‐PNVP were characterized using GPC and 1H NMR. Amphiphilic PS‐b‐PNVP could form spherical micelles with PS cores and PNVP shells in aqueous solution as confirmed by 1H NMR and laser light scattering (LLS). The values of critical micelle concentration of PS‐b‐PNVP and the average aggregation number of PS‐b‐PNVP in the micelles were measured using pyrene as a probe and static LLS, respectively. The aggregation number increases concomitantly with temperature (10–50 °C), but the hydrodynamic radius of the micelles remains almost constant over the same temperature range, which may indicate shell dehydration at a higher temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5604–5615, 2008  相似文献   

20.
Nanogels based on biocompatible, dual pH‐ and temperature‐sensitive poly(2‐(diethylamino)ethyl) methacrylate (PDEAEMA) have been successfully used as nanocontainers for the encapsulation of magnetite, Fe3O4 magnetic nanoparticles (MNPs). For this purpose, citric acid‐coated MNPs were encapsulated into previously synthesized PDEAEMA‐based nanogels using a poly(ethyleneglycol)‐based stabilizer. After the encapsulation of the magnetite MNPs, the so‐called magneto‐nanogels (MNGs) were proved to be multiresponsive on temperature, pH, and magnetic field and colloidally stable. Moreover, preliminary studies on the biocompatibility of these MNGs with cells of human peripheral blood were performed and evidenced quite tolerable biocompatibility, thus suggesting potential use in biomedical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1479–1494  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号