首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
High‐quality Inx Al1–xN (0.71 ≤ xIn ≤ 1.00) nanocolumns (NCs) have been grown on Si(111) substrates by rf‐plasma‐assisted molecular‐beam epitaxy (rf‐MBE). Low‐temperature photoluminescence (LT‐PL) spectra of various In‐rich InAlN NCs were measured at 4 K and single peak PL emissions were observed in the wavelength region from 0.89 µm to 1.79 µm. Temperature‐dependent PL spectra of In0.92Al0.08N NCs were studied and the so‐called “S‐shape” (decrease–increase–decrease) PL peak energy shift was observed with increasing temperature. This shift indicates the carrier localization induced by the In segregation effect and is different from the anomalous blue shift frequently observed in InN films and nanowires with high residual carrier concentra‐ tions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Phosphorus‐carbide, CPx (0.025 ≤ x ≤ 0.1), thin films have been synthesized by magnetron sputtering from pressed graphite–phosphorus targets. The films were characterized by X‐ray photoelectron spectroscopy, transmission electron microscopy and diffraction, and nanoindentation. CP0.1 ex‐hibits C–P bonding in an amorphous structure with elements of curved graphene planes, yielding a material with unique short range order. These features are consistent with what has been predicted by our results of theoretically modeled synthetic growth of CPx . The films are mechanically resilient with hardness up to 24 GPa and elastic recovery up to 72%. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We report the fabrication and characterization of highly responsive ZnMgO‐based ultraviolet (UV) photodetectors in the metal–semiconductor–metal (MSM) configuration for solar‐blind/visible‐blind optoelectronic application. MSM devices were fabricated from wurtzite Zn1–xMgx O/ZnO (x ~ 0.44) thin‐film heterostructures grown on sapphire (α‐Al2O3) substrates and w‐Zn1–xMgx O (x ~ 0.08), grown on nearly lattice‐matched lithium gallate (LiGaO2) substrates, both by radio‐frequency plasma‐assisted molecular beam epitaxy (PAMBE). Thin film properties were studied by AFM, XRD, and optical transmission spectra, while MSM device performance was analyzed by spectral photoresponse and current–voltage techniques. Under biased conditions, α‐Al2O3 grown devices exhibit peak responsivity of ~7.6 A/W at 280 nm while LiGaO2 grown samples demonstrate peak performance of ~119.3 A/W, albeit in the UV‐A regime (~324 nm). High photoconductive gains (76, 525) and spectral rejection ratios (~103, ~104) were obtained for devices grown on α‐Al2O3 and LiGaO2, respectively. Exemplary device performance was ascribed to high material quality and in the case of lattice‐matched LiGaO2 films, decreased photocarrier trapping probability, presumably due to low‐density of dislocation defects. To the best of our knowledge, these results represent the highest performing ZnO‐based photodetectors on LiGaO2 yet fabricated, and demonstrate both the feasibility and substantial enhancement of photodetector device performance via growth on lattice‐matched substrates. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
Using synchrotron radiation nanoprobe, this work reports on the elemental distribution in single Inx Ga1–xN nanowires (NWs) grown by molecular beam epitaxy directly on Si(111) substrates. Single NWs dispersed on Al covered sapphire were characterized by nano‐X‐ray fluorescence, Raman scattering and photoluminescence spectroscopy. Both Ga and In maps reveal an inhomogeneous axial distribution inside sin‐ gle NWs. The analysis of NWs from the same sample but with different dimensions suggests a decrease of In segregation with the reduction of NW diameter, while Ga distribution seems to remain unaltered. Photoluminescence and Raman scattering measurements carried out on ensembles of NWs exhibit relevant signatures of the compositional disorder. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A rutile β‐MnO2 film was grown on MgO substrate using plasma‐assisted molecular beam epitaxy (PAMBE) monitored by reflection high‐energy electron diffraction (RHEED). Polarized Raman spectra at various temperatures were obtained to investigate the influence of the helimagnetic structure on the vibrational modes of β‐MnO2. A red shift of Eg modes indicates a gradual formation of spin angles between neighboring Mn4+ ions. The intensities of the Eg and A1g modes with y‐polarized incidence increase remarkably below the Néel temperature. A new view as vibrational mode projection (VMP) indicates the interactions between the magnetic component of incident light and the helimagnetic structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We report a comprehensive analyzes of the Fourier transform infrared (FTIR) absorption and Raman scattering data on the structural and vibrational properties of dilute ternary GaAs1−xNx,[GaP1−xNx] (x<0.03) alloys grown on GaAs [GaP] by metal organic chemical vapor deposition (MOCVD) and solid source molecular beam epitaxy (MBE). By using realistic total energy and lattice dynamical calculations, the origin of experimentally observed N-induced vibrational features are characterized. Useful information is obtained about the structural stability, vibrational frequencies, lattice relaxations and compositional disorder in GaNAs (GaNP) alloys. At lower composition (x<0.015) most of the N atoms occupy the As [P] sublattice {NAs[NP]}—they prefer moving out of their substitutional sites to more energetically favorable locations at higher x. Our results for the N-isotopic shifts of local mode frequencies compare favorably well with the existing FTIR data.  相似文献   

7.
Deep levels introduced by low‐energy (200 keV) electron irradiation in n‐type 4H‐SiC epitaxial layers grown by chemical vapour deposition were studied by deep level transient spectroscopy (DLTS) and photoexcitation electron paramagnetic resonance (photo‐EPR). After irradiation, several DLTS levels, EH1, EH3, Z1/2, EH5 and EH6/7, often reported in irradiated 4H‐SiC, were observed. In irradiated freestanding films from the same wafer, the EPR signals of the carbon vacancy in the positive and negative charge states, VC+ and VC, respectively, can be observed simultaneously under illumination with light of certain photon energies. Comparing the ionization energies obtained from DLTS and photo‐EPR, we suggest that the EH6/7 (at ~EC – 1.6 eV) and EH5 (at ~EC – 1.0 eV) electron traps may be related to the single donor (+ | 0) and the double acceptor (1– | 2–) level of VC, respectively. Judging from the relative intensity of the DLTS signals, the EH6/7 level may also be contributed to by other unidentified defects. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Aryl‐substituted polyfluorinated carbanions, ArCHRf? where Rf = CF3 ( 1 ), C2F5 ( 2 ), i‐C3F7 ( 3 ), and t‐C4F9 ( 4 ), were analyzed by means of the natural bond orbital (NBO) theory at the B3LYP/6‐311+G(d,p) computational level. A lone pair NBO at the formal anionic center carbon (Cα) was not found in the Lewis structure. Instead, significant donor/acceptor NBO interactions between π(Cα‐C1) and σ*(Cβ‐F) or σ*(Cβ‐Cγ) were observed for 1 , 2 , 3a (strong electron‐withdrawing substituent, from p‐CF3 to p‐NO2), and 4 . Their second‐order donor/acceptor perturbation interaction energy, E(2), values decreased with the increase of the stability of carbanions. A larger E(2) value corresponds to longer Cβ‐F and Cβ‐Cγ bonds and a shorter Cα‐Cβ bond, indicating that the E(2) values can be associated with the negative hyperconjugation of the Cβ‐F and Cβ‐Cγ bonds. In accordance with this, the E(2) values for π(Cα‐C1) → σ*(Cβ‐F) were linearly correlated with the ΔGoβ‐F values (an empirical measure of β‐fluorine negative hyperconjugation obtained from an increased acidity). In 3b (weak electron‐withdrawing substituents, from H to m‐NO2) very large E(2) values for LP(Fβ) → π*(Cα‐Cβ) were obtained. This was attributed to the Cβ‐F bond cleavage and the Cα‐Cβ double bond formation in the Lewis structure that is caused by the extremely strong negative hyperconjugation of the Cβ‐F bond.  相似文献   

9.
InxGa1– xAs(x}<0.03)/GaAs lasers grown by vapor phase epitaxy using an In/Ga alloy source were characterized by double crystal X-ray (DCX) diffraction and deep level transient spectroscopy (DLTS) measurements. Based on the results obtained from (400), (511), and (¯511) DCX rocking curves, the obvious effect of In incorporation is to give an increase in the full width at half maximum of the rocking curves that correlates with a coherency of the epitaxial layers. From DLTS spectra according to the In content, the most prominent electron deep traps areE 4 (E c-0.58eV) andE5 (E c-0.84eV). TheE 4 trap density increases with In content while the change ofE 5 trap density is not monotonic. The trend ofE 5 trap densities versus In content is very similar to that of etch pit densities (EPDs), that is, a minimum in EPD andE 5 trap density is observed at an In content ofx0.003 but beyond this value the densities increase again with In content.  相似文献   

10.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The self‐regenerative property of LaCo1–xyPdx Zny O3±δ and LaFe1–xyPdx Zny O3±δ solid solutions with monometallic Pd or bimetallic Pd/Zn substituents for Co or Fe is studied under a redox cycle by high angular annular dark‐field scanning transmission electron microscopy (STEM‐HAADF) and energy dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction (XRD). These results reveal that the composition of perovskites determines the self‐regenerative property that occurs largely in LaCo1–xyPdx Zny O3±δ but is limited greatly in LaFe1–xyPdx Zny O3±δ. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Five (PbO)x(Bi2O3)0.2(B2O3)0.8−x glasses, where x = 0, 0.2, 0.3, 0.4 and 0.6, were prepared. The dilatometric glass transition temperature (Tg) was found in the region 470 (x = 0)≥ Tg ( °C) ≥ 347 (x = 0.6), and the density (ρ) varied within 4.57 (x = 0) ≤ ρ (g/cm3) ≤ 8.31 (x = 0.6). Raman spectra indicated the conversion of BO3 to BO4 entities for low x values but for x > 0.3, namely, for x → 0.6, back‐conversion occurred, most probably. From the measurements of the optical transmission on very thin bulk samples, the room temperature optical gap values (Eg) were determined to be in the range 4.03 (x = 0)≥ Eg (eV) ≥ 3.08 (x = 0.6). The temperature (T) dependence of the optical gap (Eg(T)) in the region 300 ≤ T(K) ≤ 600 was examined and approximated by a linear relationship of the form of Eg(T) = Eg(0)− γT, where γ × 10−4(eV/K) varied from 5.1 to 6.8. The non‐linear refractive index (n2) was estimated from the optical gap values and it was found to correspond to the n2 values calculated from the experimental third‐order non‐linear optical susceptibility taken from the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Radiative and nonradiative processes in deep ultraviolet (DUV) AlGaN/AlGaN multiple quantum wells (MQWs) grown by LP‐MOCVD have been studied by means of deep ultraviolet time‐integrated photoluminescence (PL) and time‐resolved photoluminescence (TRPL) spectroscopy. As the temperature is increased, the peak energy of DUV‐AlGaN/AlGaN MQWs PL emission (Ep) exhibits a similarly anti‐S‐shaped behavior (blueshift – accelerated redshift – decelerated redshift): Ep increases in the temperature range of 5.9–20 K and decreases for 20–300 K, involving an accelerated redshift for 20–150 K and an opposite decelerated redshift for 150–300 K with temperature increase. Especially at high temperature as 300 K, the slope of the Ep redshift tends towards zero. This temperature‐induced PL shift is strongly affected by the change in carrier dynamics with increasing temperature. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
H‐bonded complexes of p‐X‐PhOH/p‐X‐PhO? with fluoride and hydrofluoric acid (X = OH, H, NO2) were subject of optimization (by means of B3LYP/6‐311+G**) for gradually changed O···F distance from dO···F = 4.0 Å down to (i) the distance of the proton transfer from the hydroxyl group to fluoride leading to O?···HF interaction and (ii) fully optimized system (O?···HF type). In this way, we simulate gradual changes of H‐bond strength estimating simultaneously the energy of interaction, Eint, energy of deformation, Edef, and the binding energy, Etot. The obtained geometrical parameters allow us to show that H‐bond formation causes substantial changes in geometry, even at so distant parts of the system as the ring and bond length in para‐substituents (OH and NO2). All these changes are monotonically dependent on interaction and deformation energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The on‐shell self‐energy of the homogeneous electron gas in second order of exchange, Σ2x = Re Σ2x (kF, k2 F/2), is given by a certain integral. This integral is treated here in a similar way as Onsager, Mittag, and Stephen [Ann. Physik (Leipzig) 18 , 71 (1966)] have obtained their famous analytical expression e2x = (in atomic units) for the correlation energy in second order of exchange. Here it is shown that the result for the corresponding on‐shell self‐energy is Σ2x = e2x. The off‐shell self‐energy Σ2x (k, o) correctly yields 2e2x (the potential component of e2x) through the Galitskii‐Migdal formula. The quantities e2x and Σ2x appear in the high‐density limit of the Hugenholtz‐van Hove (Luttinger‐Ward) theorem.  相似文献   

16.
Abhay Kumar Singh 《哲学杂志》2013,93(18):1457-1472
In this paper, we report on the non-isothermal crystallization kinetics of Se98 ?x Zn2In x (0 ≤ x ≥ 10) chalcogenide glasses. The onset crystallization activation energy E c, peak crystallization activation energy E p and overall crystallization activation energy E have been determined by different approaches. The values of E c, E p and E have minima at a composition corresponding to 6 at% In. However the stability factor S and the crystallization rate constant stability factor K have a maximum and a minimum, respectively, at in the same composition. The nucleation and growth order parameter n, and the dimension order parameter m, are also determined and discussed for the present glasses.  相似文献   

17.
In this study, we have investigated calcium and silicate‐free samples over a wide compositional range in the xB2O3·30 Na2O·(70−x)P2O5 system, with 0 ≤ x ≤ 70 mol%, in order to determine the influence of the chemical composition on their structure and bioactive response in simulated body fluid. Information related to the chemical structures present in the network was obtained by means of Raman and infrared spectroscopy. For samples containing small amounts of P2O5, boron structures are preponderant. Upon increasing the phosphorus content, the samples' network is based on phosphate chains linked by boron groups through ‘P–O–B’ bridges. For high concentration of P2O5, the Q3 units form three‐dimensional network, whereas Q2 units assist the chain formation. Regarding the in vitro assessment of bioactivity, the clear print of PO4 asymmetric bending vibrations of apatite‐like layer in the 540–680 cm−1 spectral domain, the scanning electron micrographs and energy dispersive x‐ray analysis spectra demonstrate that the studied borophosphate samples exhibit good bioactive response only for certain chemical compositions. More exactly, the highest bioactivity is obtained for 30% and 20% B2O3 (mol%) after 3 and 11 days of immersion, respectively. Therefore, the samples with 20–30 mol% boron content are valuable candidates that can be used as materials for tissue engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
《X射线光谱测定》2005,34(3):179-182
The energies and intensities of the various transitions corresponding to the transition scheme 2p3/2?13x?1–3x?13d3/2?1 (i.e. L3Mx–MxM4) were used to compute theoretical Lα2 satellite spectra in 13 elements in the atomic number range of 62 ≤ Z ≤ 90. The energies were calculated using available HFS data on K–LM and L–MM transition energies. The intensities of all the possible transitions were estimated by considering cross‐sections for the Auger transitions simultaneous to a hole creation and then distributing statistically the total cross‐sections for initial two‐hole states 2p3/2?13x?1 (L3Mx) amongst various allowed transitions from these initial states to 3x?13d3/2?1 (MxM4) final states. Each transition was assumed to give rise to a Gaussian line and the overall spectrum was computed as the sum of these Gaussian curves. The calculated spectra were compared with the available measured Lα satellite spectra. The peaks in the theoretical satellite spectra were identified as the experimentally reported satellites Lαs, La13, La14 and La17, which lie on the high‐energy side of the Lα2 dipole line. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The tUVJ model fits together three major parts of the superconductivity puzzle of the cuprite compounds: (i) it describes the opening of a d‐wave pairing gap, (ii) it is consistent with the fact that the basic pairing mechanism arises from the antiferromagnetic exchange correlations, and (iii) it takes into account the charge fluctuations associated with double occupancy of a site which play an essential role in doped systems. The strengths of the interactions U, V and J in YBa2Cu3O6.7 and La2‐xSrxCuO4 (x = 0.16) samples are obtained by requiring quantitative consistency between the angle‐resolved photoemission spectroscopy (ARPES) measurements, the sharp collective mode at the antiferromagnetic wave vector Q AF=(π,π), and the observed inelastic neutron scattering resonance (INSR) positions of the incommensurate peaks at wave vectors Q δ = ((1 ± δ)π,π) and Q δ = (π(1 ± δ)π).  相似文献   

20.
Even though all the pN,N‐dimethylaminobenzonitrile (p‐DMABN), ciso‐DMABDI, and cisp‐DMABDI (the N,N‐dimethylamino analogues of green fluorescence protein chromophore) have the same electron‐donating N,N‐dimethylamino group, unlike the dual fluorescence of p‐DMABN, both ciso‐DMABDI and cisp‐DMABDI display single fluorescence. To figure out the interesting phenomena, the CAM‐TD‐B3LYP method and the cc‐pVDZ basis set were used to explore geometries, molecular orbitals, electronic transition, dipole moment, and potential energy surfaces of the S1 excited states of ciso‐DMABDI and cisp‐DMABDI. We found that the S1 excited states of ciso‐DMABDI and cisp‐DMABDI are 1(π, π*) charge transfer excited states with twisted structures, where the N,N‐dimethylaminobenzene moiety functions as an electron donor, the methyleneimidazolone moiety serves as an electron acceptor, and the electron donor is linked with the electron acceptor by the C─C single bond (P‐bond). The fluorescent emissions of ciso‐DMABDI and cisp‐DMABDI predicted by the CAM‐TD‐B3LYP/cc‐pVDZ level are quite consistent with the experimental results. For the ciso‐DMABDI and cisp‐DMABDI, the S1 locally excited state is less stable than the S1 twisted intramolecular charge transfer state, and the S1 LE state is not a stationary point (global minimum). That is why both ciso‐DMABDI and cisp‐DMABDI display single fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号