首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyetheretherketone (PEEK) is a thermoplastic material with outstanding properties and high potential for biomedical applications, including hermetic encapsulation of active implantable devices. Different biomedical grade PEEK films with initial degree of crystallinity ranging from 8% to 32% (with or without mineral filling) were inspected. PEEK surfaces were treated with nitrogen RF plasma and the effects on materials crystallinity and self‐bonding were evaluated. In particular, the relationship between auto‐adhesive properties and crystalline content of PEEK before and after plasma treatment was examined. PEEK samples showed different bonding strength depending on their degree of crystallinity, with higher self‐bonding performance of mineral‐filled semi‐crystalline films. XRD did not show any modification of the PEEK microstructure as a result of plasma treatment, excluding a significant influence of crystallinity on the self‐bonding mechanisms. Nevertheless, plasma surface treatment successfully improved the self‐bonding strength of all the PEEK films tested, with larger increase in the case of semi‐crystalline unfilled materials. This could be interpreted to the increase in chain mobility that led to interfacial interpenetration of the amorphous phase.  相似文献   

2.
The effects of argon (Ar) and a mixture of Ar and oxgyen(Ar/O2) plasmas on amorphous and semi‐crystalline poly(bisphenol A hexane ether) thin films were investigated by time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS) and principal component analysis (PCA). PCA results of the ToF‐SIMS spectra indicate that an Ar/O2 plasma produced less physical sputtering and had a higher chemical reactivity than did an Ar plasma, regardless of whether an amorphous or a crystalline surface was involved. However, the chemical differences between the Ar‐ and Ar/O2‐plasma‐treated semi‐crystalline films were much smaller. The observed results can be explained by the higher resistance of the polymer crystalline regions to physical sputtering and chemical etching. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Polyether ether ketone (PEEK) is a substrate for metal plating to overcome insulation defects and satisfy the increased demands of mechanically robust electronic circuit boards. However, pristine PEEK is hydrophobic; hence, the adhesion between the metal film and PEEK substrate is poor. Therefore, the PEEK surface should be modified to improve hydrophobicity. We have proposed the active oxygen (AOS) treatment under ultraviolet (UV) light as an alternative to a conventional plasma treatment method. Characteristics of the PEEK surfaces obtained by these methods are compared. We explore the effects of reactive-oxygen and UV light exposure time on the PEEK surface modification. The contact angle of water drop on PEEK after the AOS treatment is lower than that of untreated PEEK. Furthermore, COO groups are observed on the PEEK surface after the treatment. Although plasma treatment has the effect of roughening the surface, it is desirable not to roughen the surface for use in electronic circuit boards. Moreover, we have reported the adhesion strength between PEEK and copper plating without surface roughening.  相似文献   

4.
A two‐step process based on a low‐pressure helium plasma treatment followed by acrylic acid‐grafting copolymerization was used for the surface modification of expanded polytetrafluoroethylene (ePTFE) films. The effects of plasma treatment power and treatment time on the hydrophilicity of the film surface were investigated. The wettability of the ePTFE film surface was characterized by water contact angle, and the surface compositions of the untreated and treated ePTFE samples were evaluated by atomic force microscopy and XPS. Contact angle measurements revealed that the hydrophilicity of the ePTFE film surface was greatly enhanced by the combined actions of the plasma treatment and acrylic acid grafting, and the contact angle decreased from 145° to 66°. Atomic force microscopy analyses showed that the surface roughness increased after the plasma treatment. XPS analyses showed substantial increase in the concentration of carbon and oxygen atoms and a decrease in the concentration of fluorine atoms at the film surface. T‐peel strength showed an improved bonding strength between the film and an adhesive tape after the treatment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of plasma treatment of polycarbonate (PC) substrates on the morphological, electrical, and adhesion properties of deposited amorphous transparent indium zinc oxide (IZO) by direct current magnetron sputtering was investigated by analyzing atomic force microscopy, contact angles, Hall, and nano‐scratch measurements. The surfaces of PC substrates were performed by plasma treatment at various processing times in Ar/O2 mix atmosphere. The atomic force microscopy images indicated that the microstructure of the substrates considerably influenced the surface morphology of deposited IZO films, and the least surface roughness of IZO was obtained after 5‐s plasma treatment. The IZO film deposited on PC with 5‐s plasma treatment presented an improved electrical conductivity and thermal stability after annealing at 120 °C in air, whereas the significant decrease in carrier concentration and increase in resistivity with extending plasma treatment time were observed, which was attributed to the elevated oxygen adsorption during annealing for a loosely packed structure. Moreover, the adhesion properties of IZO films with PC substrates decreased after 30‐s plasma treatment because of the significant difference on the surface polarity between the PC and thin films and the increased roughness caused by plasma etching. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A low-energy Ar+ ion beam was used to modify the surface of a polyetheretherketone (PEEK) film. The modification reaction proceeded with or without oxygen gas injected during the irradiation. The surface functional groups of the modified PEEK were confirmed with X-ray photoelectron spectroscopy as increasing various oxygen-containing functional groups. The concentration of the functional groups varied rapidly with the irradiation time, reached a maximum value, and then slowly decreased. The surface morphology of PEEK was substantially changed by ion-beam irradiation. Surface smoothening occurred so that the surface roughness reached almost constant value after some irradiation time. The incorporation of functional groups on the PEEK surface and the surface topology change had opposite effects on the adhesion strength between PEEK and copper. Dominance of the former was evident because the lap-shear strength initially increased with the irradiation. The special surface features significantly enhanced the adhesion strength between the evaporated copper layer and the modified PEEK surface. However, the decrease in the surface roughness with a long time irradiation implies a decrease in adhesion strength due to a smaller contact area, and the shear strength due to topology change also slowly decreased after a long time irradiation.  相似文献   

7.
These studies aimed to investigate in detail changes on cellulose surfaces treated with low pressure oxygen plasma at various exposure times. Modifications of cellulose films were studied in respect to topography effects by means of atomic force microscopy and scanning electron microscopy. Chemical effects of plasma treatment were studied using X-ray photoelectron spectroscopy and X-ray diffractometry. Results show that the topographical evolution of the surfaces to rougher ones is not at all gradual. Local maxima of fractionation and the surface size regularity were investigated using surface fractal analysis and Wenzel roughness factors, respectively. It was shown, that plasma treatments decompose the cellulose material by formation of highly functionalized molecules. Such plasma-initiated and supported reactions taking place on the sample surface. The bulk phase and in particular, the crystalline domains are not influenced by plasma treatments. The studies provide useful information to understand the plasma reaction on amorphous and crystalline regions of cellulose surfaces and allow to predict effects of the plasma treatment on physical and chemical properties of much more complex cellulose systems such as cotton fibres and fabrics.  相似文献   

8.
A combination of optical and atomic force microscopy (AFM) is used for probing changes in the morphology of polymer blend films that accompany phase ordering processes (phase separation and crystallization). The phase separation morphology of a “model” semi‐crystalline (polyethyleneoxide or PEO) and amorphous (polymethylmethacrylate or PMMA) polymer blend film is compared to previous observations on binary amorphous polymer blend films of polystyrene (PS) and polyvinylmethylether (PVME). The phase separation patterns are found to be similar except that crystallization of the film at high PEO concentrations obscures the observation of phase separation. The influence of film defects (e.g., scratches) and clay filler particles on the structure of the semi‐crystalline and amorphous polymer films is also investigated.  相似文献   

9.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) fibers have been modified by plasma treatment to increase adhesion in high‐density polyethylene (HDPE) matrices. Results showed that surface roughness predominates for modified UHMWPE fibers, indicating that the plasma treatment favors the interaction with HDPE. Unmodified HDPE composite samples gave a lower interlaminar shear strength than did the samples that were incorporated with UHMWPE. The addition of unmodified UHMWPE fibers to the neat HDPE significantly increases interlaminar shear strengths of composites, up to 20 vol%. The oxygen concentration increased from 16.16 %to 21.99%, and the ratio of oxygen to carbon atoms increased significantly from 0.194 to 0.284 after oxygen plasma treatment for 5 minutes with a power of 300 W.  相似文献   

10.
The influence of the surface morphology of semi‐crystalline poly(ethylene terephthalate) (PET) and polyamide 12 (PA12) films on the adhesion and cohesion of thin oxide coatings is analysed, with attention paid to the role of spherulites and processing additives. The failure mechanisms of the coating are determined by means of fragmentation tests and the results are modelled using a constant interfacial strength approach with a Weibull‐type probability of fracture. Coating failure is shown to be initiated at defect sites such as pinholes and, in the case of PET, the presence of additives in the superficial layers of the polymer leads to a decrease of the crack onset strain by a factor of 20%. Large spherulitic structures found at the surface of PA12 films are shown to lead to preferential delamination at spherulites boundaries. For the two types of semi‐crystalline polymers, the interfacial shear strength is found to be comparable to the bulk shear strength of the polymer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Polymethylmethacrylate (PMMA) films were modified by RF oxygen plasma with various powers applied for different periods, and the effects of these parameters on the surface properties such as hydrophilicity, surface free energy (SFE), chemistry, and topography were investigated by water contact angle, goniometer, X‐ray photoelectron spectroscopy (XPS), and atomic force microscopy, and the types of the created free radicals and their decay were detected by electron spin resonance spectroscopy (ESR). SFE and contact angle results varied depending on the plasma parameters. Oxygen plasma treatment (100 W–30 min) enhanced the hydrophilicity of PMMA surface as shown by decreasing the water contact angle from 70° to 26°. XPS analysis showed the change in the amounts of the present functionalities as well as formation of new groups as free carbonyl and carbonate groups. The roughness of the surface increased considerably from ~2 nm to ~75 nm after 100 W–30 min oxygen plasma treatment. ESR analysis indicated the introduction of peroxy radicals by oxygen plasma treatment, and the intensity of the radicals increased with increasing the applied power. Significant decrease in radical concentration was observed especially for the samples treated with higher powers when the samples were kept under the atmospheric conditions. As a conclusion, RF plasma, causes changes in the chemical and physical properties of the materials depending on the applied parameters, and can be used for the creation of specific groups or radicals to link or immobilize active molecules onto the surface of a material. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We present a study of the oxygen‐plasma functionalization of polyethersulphone (PES). PES samples were exposed to a weakly ionized, highly dissociated oxygen plasma, with an electron temperature of 5 eV and a positive ion density of 8 × 1015 m?3, and its afterglow, in which the density of charged particles was negligibly low and the density of neutral oxygen atoms was 4 × 1021 m?3. The wettability of the samples was determined by measuring the contact angle of a water drop, while the appearance of the functional groups on the surface of the samples was determined using high‐resolution conventional XPS. The samples were saturated with surface functional groups, both in the plasma and in the afterglow region, after 1 s of treatment time. The results are explained by the high flux of oxygen atoms on the sample surface and the characteristics of the oxygen plasma. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A study of the transport of the dichloromethane in neat poly(aryl-ether-ether-ketone) (PEEK) samples with thicknesses from 0.08 to 3.0 mm with different morphologies was conducted at 35°C. Both sorption and desorption of the solvent were studied. Thermal annealing was used to vary the sample morphology, and density measurements were used to determine the crystallinity of the samples. The equilibrium concentration of solvent and rate of solvent sorption were found to vary with sample morphology. The density of the dichloromethane when in the PEEK resin was found to be 1.65 g/cm3. Solvent desorption was independent of sample morphology or any previous sample treatment and depended only upon desorption temperature. Solvent sorption appears to alter the morphology of amorphous samples by increasing the crystallinity to about 20% after one sorption/desorption cycle. Small amounts of the solvent, less than 0.5 wt.%, remain trapped in fully desorbed samples. The micromorphology of solvent-induced crystallization appears to be different from that induced by thermal treatment.  相似文献   

14.
Changes in the surface structure of oriented polypropylene (PP) films in conditions of graft copolymerization of acrylamide, vinylpyridine, and styrene on a PP surface preliminary subjected to plasmochemical activation in oxygen plasma or in a plasma-electrolyte solution system are investigated by atomic-force microscopy. It is shown that the latter soft conditions of activation are superior to the hard conditions with oxygen plasma in retaining original lamellar structure of oriented PP films. It is established that the subsequent graft copolymerization of the vinyl and acryl monomers on the PP surface yields amorphous phases of respective polymers.  相似文献   

15.
The effects of crystallinity and temperature on enzymatic degradation of poly‐ε‐caprolactone (PCL) films and structural changes after degradation have been studied using weight loss, differential scanning calorimetry, and optical microscopy. The weight loss during the enzymatic degradation of PCL suggested that the extent of biodegradation and the rate of degradation strongly depend on the initial crystallinity. PCL films of lower crystallinity (24%) degraded much faster than films of higher crystallinity (45%). The crystallinity of low‐crystalline PCL films increased with increasing degradation time, whereas the crystallinity of high‐crystalline PCL films decreased with time. The spherulite size increased with increasing degradation time for low‐crystalline samples but decreased with time for high‐crystalline samples. These results revealed that degradation occurs first in the amorphous region where the degradation rate is much higher, and the crystalline region of the PCL film started to degrade simultaneously for those PCL with higher crystallinity. The enzymatic degradation of PCL proceeded from the free amorphous to restricted amorphous followed by lamellar edges, where PCL chains have higher mobility irrespective of hydrolysis temperature. Caproic acid was identified as the primary product formed after degradation and confirmed by proton nuclear magnetic resonance spectroscopy, suggesting that degradation occurs through the depolymerization mechanism. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 202–211, 2010  相似文献   

16.
Poly(ether ether ketone) s with terminal propargyl groups (PEEK‐PR) were synthesized from hydroxyl terminated PEEK (PEEKTOH) and characterized. The heat‐triggered polymerization of PEEK‐PR to poly bischromenes having PEEK backbone was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetric studies. PEEK‐PR was blended with a bisphenol based epoxy resin‐diamino diphenylsulphone system in different proportions and cured to form PEEK‐bischromene‐interpenetrated‐epoxy‐amine networks. Tensile strength and elongation of the cured blends increased up to 10‐phr loading of PEEK‐PR and then declined. Tensile moduli of all formulations were comparable. Fracture toughness increased by a maximum of 33%, and the fractured surface morphology showed a ductile fracture. The blends exhibited slightly lower glass transition temperature to that of the neat epoxy‐amine system. A reference sample of epoxy‐amine was processed with the optimum loading of the precursor polymer, PEEKTOH, and compared its properties with the PEEK‐PR incorporated epoxy systems. In this way, it is found that the incorporation of addition curable propargylated PEEK increases the strength characteristics with adequate thermal stability and fracture toughness for high‐performance structural applications.  相似文献   

17.
The dynamic relaxation behavior of solvent-crystallized poly(ether ether ketone) (PEEK) has been investigated in the region of the glass-rubber (α) relaxation using dynamic mechanical and dielectric methods. Amorphous PEEK films were exposed to saturated methylene chloride and acetone vapor, with solvent-induced crystallization observed for both penetrants. Sample desorption at elevated temperatures (under vacuum) resulted in virtually complete removal of residual penetrant, thus providing for the measurement of relaxation characteristics independent of plasticization. Both dynamic mechanical and dielectric studies indicated a marked positive offset in the isochronal relaxation temperatures of the solvent-crystallized samples relative to thermally crystallized specimens of comparable bulk crystallinity, and a higher apparent activation energy in the solvent-crystallized case. These results are consistent with the evolution of a tighter crystalline morphology (i.e., smaller crystal long spacing) in the solvent-crystallized samples, the crystallites imposing a greater degree of constraint on the long-range motions of the amorphous chains inherent to the glass-rubber relaxation. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The absorption and swelling of poly(aryl-ether-ether-ketone) (PEEK) in toluene as a function of resin morphology and temperature in the range 35–95°C was investigated. In all cases the weight gain curves exhibit three characteristics: (1) an induction period, which is a strong function of both temperature and initial crystallinity, (2) a main absorption region, which is linear with square-root time, and (3) a final equilibrium value, namely, solubility. The solubility of amorphous PEEK decreases with temperature and the heat of solution is ?0.93 kcal/mol. The induction period varies with the fourth power of the crystallinity and decreases with temperature with an apparent activation energy of 50 kcal/mol. The strength of the interaction between the crystalline regions is markedly reduced at temperatures greater than 80°C. Swelling accompanying the absorption of the toluene is highly anisotropic with most of the dimensional changes occurring in the thickness direction. The deswelling process, however, is essentially isotropic. The concentration of toluene in solution has a strong effect on the transport process; the equilibrium solubility of toluene in amorphous PEEK immersed in a toluene/iso-octane mixture is a linear function of toluene concentration; but the pseudo-diffusion coefficient for the absorption of toluene varies approximately with the fourth power of its concentration.  相似文献   

19.
Low pressure glow discharge nitrogen plasma has been used to improve wettability in a low density polyethylene (LDPE) film for technical applications. The plasma treatment was carried out at a power of 300 W for different exposure times in the 1–20 min range. Wettability changes were analyzed using contact angle measurements. In addition to this, plasma‐treated samples were subjected to an aging process to determine the durability of the plasma treatment. X‐ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy were used for surface characterization. The nitrogen plasma treatment considerably reduced contact angle values thus indicating an increase in surface wettability. The spectroscopic study showed presence of oxygen‐based species on the plasma‐treated samples, which are mainly generated after the plasma treatment as a consequence of air exposure. These polar species contribute to improve surface functionalization, but this is almost lost during aging due to the hydrophobic recovery process. Microscopic studies revealed that also small changes in surface roughness occurred during the plasma treatment but these are very low compared to surface activation. The results confirmed that low pressure nitrogen can be considered as an environmentally efficient process to improve wettability in low density polyethylene films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2390–2399, 2007  相似文献   

20.
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m?3, and the neutral atom density was about 4 × 1021 m?3 for oxygen and 1 × 1021 m?3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen‐plasma‐treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen‐plasma‐treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma‐treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号