首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel method was developed for fabricating poly(trimethylene terephthalate) (PTT)/BaSO4 nanocomposites using in situ polymerization. A nano‐BaSO4 suspension was prepared by reacting H2SO4 with Ba(OH)2 in 1,3‐propanediol (PDO). The mean size of original nano‐BaSO4 is 15–23 nm. PTT matrix was synthesized by condensation polymerization of bis(3‐hydroxypropyl terephthalate) after the completion of transesterification of dimethyl terephthalate (DMT) with PDO. It was found that the addition of BaSO4 had little influence on the synthesis of PTT. The properties of nanocomposites with a wide range of BaSO4 fraction were systematically studied. The morphologies of the composites were investigated by transmission electron microscopy (TEM), which showed that agglomerate structures did not form until BaSO4 content higher than 8 wt%. The thermal properties of the nanocomposites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results revealed that the triple endothermic melting phenomenon is only observed for the nanocomposites which contained 4 wt% BaSO4, other samples exhibit double endothermic melting. These results indicated that nano‐BaSO4 could induce a microcrystal to form more perfect morphology and restrain the formation of much thicker lamellar crystallinity, that is, nano‐BaSO4 could induce the formation of more uniform crystallinity. Besides, the crystallization ability of the composites was greatly improved by loading nano‐BaSO4. The TGA results suggested that nano‐BaSO4 slightly increased the maximum‐decomposing‐rate temperature 1 (Tmax1), but markedly increased the maximum‐decomposing‐rate temperature 2 (Tmax2). Furthermore, the steady‐state shear behavior of samples was investigated by a parallel‐plate rheometer. The storage modulus (G') and loss modulus (G”) curves shifted to higher modulus upon addition of 2–16 wt% of nano‐BaSO4. All of the samples investigated exhibited the expected shear‐thinning behavior. Proper contents of nano‐BaSO4 would decrease the shear viscosity of nanocomposites, whereas superfluous amounts would greatly increase the viscosity of nanocomposites and the composites which loaded 8 wt% nano‐BaSO4 revealed an equivalent shear viscosity compared to pure PTT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The preparation and properties of poly(1‐butene) (PB)/clay nanocomposites are described for the first time. Nanocomposites were prepared with the melt‐intercalation technique, using organically modified clay. The X‐ray diffraction patterns portrayed well‐defined diffraction peaks at higher d‐spacing than pristine clay, confirming the intercalation of polymer in silicate layers. Because PB exhibits time‐dependent polymorphism, the effect of clay on the phase transformation of PB was examined with thermal analysis. The phase transformation from a metastable tetragonal form to a stable hexagonal form was enhanced because of incorporation of layered silicates in the polymer matrix. The nanocomposites exhibited about a 40–140% increase in storage modulus depending on the clay content and significantly lower coefficient of thermal expansion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1014–1021, 2003  相似文献   

4.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003  相似文献   

5.
Organic-inorganic hybrid materials with excellent heavy metal ions chelating properties were synthesized by covalent bonding of multifunctional polymers of polyamidoamine (PAA) type onto silica. Two series of polyamidoamine-silica hybrid materials differing in the PAA chemical structure were prepared and their thermal properties were investigated. Differential Scanning Calorimetry was used to study the effects of chain immobilization and ion chelation on the glass-transition temperature (Tg) of the polymers. The Tg of PAA-hybrid materials was elevated with respect to ungrafted PAAs. Complex formation with metal ions such as Cu++ or Co++ caused total suppression of Tg for both linear polymers as well as the corresponding hybrid materials. Finally, the silica particles slightly influenced the decomposition temperatures of linear polymers increasing their thermal stability.  相似文献   

6.
Silicon‐methoxide‐containing modified clays were obtained through cationic exchange between the sodium clay and the ammonium cation of [3‐(trimethoxysilyl)propyl]octadecyldimethylammonium chloride (Si18). The nanocomposites were prepared through bulk polymerization of styrene in which the Si18 clay was dispersed. The silicon‐methoxide offers the possibility of reaction between the methoxide and a clay hydroxyl group to link together the cation and the clay. The nanocomposites were characterized by X‐ray diffraction, transmission electron microscopy, and atomic force microscopy. Their thermal stability and flame retardancy were measured by thermogravimetric analysis (TGA) and cone calorimetry. Linkage between the silicon and the clay apparently occurs in the clay but is not likely to occur in the nanocomposite, perhaps because of the presence of the polystyrene spreading the distance between the reactive sites, which makes reaction more difficult. The results from TGA and cone calorimetry were similar to those obtained with other nanocomposites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1498–1503, 2002  相似文献   

7.
This article surveys the decade of progress accomplished in the application of isoconversional methods to thermally stimulated processes in polymers. The processes of interest include: crystallization and melting of polymers, gelation of polymer solutions and gel melting, denaturation (unfolding) of proteins, glass transition, polymerization and crosslinking (curing), and thermal and thermo‐oxidative degradation. Special attention is paid to the kinetics of polymeric nanomaterials. The article discusses basic principles for understanding the variations in the activation energy and emphasizes the possibility of using models for linking such variations to the parameters of individual kinetic steps. It is stressed that many kinetic effects are not linked to a change in the activation energy alone and may arise from changes in the preexponential factor and reaction model. Also noted is that some isoconversional methods are inapplicable to processes taking place on cooling and cannot be used to study such processes as the melt crystallization.

  相似文献   


8.
9.
Various natural and modified polysaccharides (i.e. arabic gum, tragacanth gum, xanthan gum, sodium alginate, chitosan, sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose) were modified using ceric-initiated graft polymerization of acrylonitrile under inert atmosphere. Grafting was confirmed using spectral (FT-IR) proofs. The grafting parameters were determined by conventional methods. Thermal characteristics of the homopolymer-free copolymers were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) under nitrogen atmosphere. The major thermal transitions as well as the activation energy of the major decomposition stages were investigated. The polyacrylonitrile (PAN)-grafted polysaccharides were recognized to be thermally stable more than the corresponding non-grafted substrates, although they begin to decompose at relatively lower temperatures than the non-grafted counterparts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
PCL was blended with pristine multiwalled carbon nanotubes (MWCNT) and with a nanohybrid obtained from the same MWCNT but grafted with low molecular weight PCL, employing concentrations of 0.25 to 5 wt % of MWCNT and MWCNT‐g‐PCL. Excellent CNT dispersion was found in all samples leading to supernucleation of both nanofiller types. Nanohybrids with 1 wt % or less MWCNTs crystallize faster than nanocomposites (due to supernucleation), while the trend eventually reverses at higher nanotubes content (because of plasticization). Rheological results show that yield‐like behavior develops in both nanocomposites, even for the minimum content of carbon nanotubes. In addition, the MWCNT‐g‐PCL family, when compared with the neat polymer, exhibits lower values of viscosity and modulus in oscillatory shear, and higher compliance in creep. These rheological differences are discussed in terms of the plasticization effect caused by the existence of low molecular weight free and grafted PCL chains in the nanohybrids. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1310–1325  相似文献   

11.
X‐ray diffraction method and differential scanning calorimetry analysis have been used to investigate the nonisothermal crystallization of poly(3‐hydroxybutyrate) (PHB)/poly(ethylene glycol) phosphonates (PEOPAs)‐modified layered double hydroxide (PMLDH) nanocomposites. Effects of cooling rates and PMLDH contents on the nonisothermal crystallization behavior of PHB were explored. These results show that the addition of 2 wt % PMLDH into PHB caused heterogeneous nucleation increasing the crystallization rate and reducing the activation energy. By adding PMLDH into the PHB probably hinder the transport ability of the molecule chains and result in a decreasing crystallity of PHB, thus increasing the activation energy. The correlation among melting behavior, apparent crystallite size, and paracrystalline distortion of PHB/PMLDH nanocomposites has been also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 995–1002, 2007  相似文献   

12.
Polymers containing neutral and cationic iron moieties within and pendent to their backbones were prepared. The redox properties of the neutral and cationic iron centers were examined using cyclic voltammetry. Photolysis of the organometallic polymers led to decoordination of the cationic cyclopentadienyliron moieties from the polymer backbones. Glass transition temperatures of the resulting ferrocene‐based polymers were lower than those of the mixed neutral/cationic polymers.  相似文献   

13.
The bulk polymerization of methyl methacrylate and styrene in the presence of an organically modified clay containing a vinyl group that can be involved in the polymerization produces exfoliated nanocomposites. These nanocomposites have been characterized by X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, mechanical properties, and cone calorimetry. The onset temperature of thermal degradation increases with the mechanical properties. The peak heat release rate is significantly reduced for nanocomposites containing 3 or 5% clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1124–1135, 2003  相似文献   

14.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

15.
Alumina/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by an in situ free‐radical polymerization process with 38 and 17 nm diameter γ‐alumina nanoparticles. At extremely low filler weight fractions (<1.0 wt % of 38 nm fillers or < 0.5 wt % of 17 nm fillers) the glass‐transition temperature (Tg) of the nanocomposites drops by 25 °C when compared to the neat polymer. Further additions of filler (up to 10 wt %) do not lead to additional Tg reductions. The thermal behavior is shown to vary with particle size, but this dependence can be normalized with respect to a specific surface area. The nanocomposite Tg phenomenon is hypothesized to be because of nonadhering nanoparticles that serve as templates for a porous system with many internal interfaces that break up the percolating structure of dynamically heterogeneous domains recently suggested by Long, D.; and Lequeux, F. Eur Phys J E 2001, 4, 371 to be responsible for the Tg reductions in polymer ultrathin films. The results also point to a far field effect of the nanoparticle surface on the bulk matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4371–4383, 2004  相似文献   

16.
The bulk polymerization of methyl methacrylate initiated with 2‐pyrrolidinone and n‐dodecyl mercaptan (R‐SH) has been explored. This polymerization system showed “living” characteristics; for example, the molecular weight of the resulting polymers increased with reaction time by gel permeation chromatographic analysis. Also, the polymer was characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR techniques. The polymer end with the iniferter structures was found. By the initial‐rate method, the polymerization rate depended on [2‐pyrrolidinone]1.0 and [R‐SH]0. Combining the structure analysis and the polymerization‐rate expression, a possible mechanism was proposed. n‐Dodecyl mercaptan served dual roles—as a catalyst at low conversion and as a chain‐transfer agent at high conversion. Finally, the thermal properties were studied, and the glass‐transition temperature and thermal‐degradation temperature were, respectively, 25 and 80–100 °C higher than that of the azobisisobutyronitrile system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3692–3702, 2002  相似文献   

17.
We describe a new strategy for preparation of benzoxazine monomers based on in situ preparation of a thiol‐functionalized benzoxazine and successive chemical modification of the thiol moiety. The thiol‐functionalized benzoxazine can be prepared from its precursor bearing two benzoxazine moieties linked by disulfide bond. Reductive cleavage of the disulfide bond of the precursor with using triphenylphosphine as a reducing agent allows successful preparation of the thiol‐functionalized benzoxazine. By performing this reduction process in the presence of epoxides and acrylates, the formation of the thiol moiety and its successive reaction with those electrophiles proceed efficiently to give the corresponding benzoxazines with sulfide moieties. The benzoxazine monomers thus prepared exhibit much higher polymerization ability than those without sulfide moiety. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1448–1457  相似文献   

18.
Poly(butylene terephthalate) (PBT)/organo‐attapulgite (ATT) nanocomposites containing 2.5 and 5 wt % nanoparticles loadings were fabricated via a simple melt‐compounding approach. The crystal structure and isothermal crystallization behaviors of PBT composites were studied by wide‐angle X‐ray diffraction and differential scanning calorimetry, respectively. The X‐ray diffraction results indicated that the addition of ATT did not alter the crystal structure of PBT and the crystallites in all the samples were triclinic α‐crystals. During the isothermal crystallization, the PBT nanocomposites exhibited higher crystallization rates than the neat PBT and the varied Avrami exponents when compared with the neat PBT. At the same time, the regime II/III transition was also observed in all the samples on the basis of Hoffman‐Laurizten theory, but the transition temperature increased with increasing ATT loadings. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the neat PBT. It should be reasonable to treat ATT as a good nucleating agent for the crystallization of PBT, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites, even if the existence of ATT could restrict the segmental motion of PBT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2112–2121, 2006  相似文献   

19.
Summary: A new class of macromolecules containing neutral and cationic organoiron moieties with arylazo chromophores in their backbones has been prepared. Photolysis of these polymers resulted in the removal of the cationic iron moieties leading to new polyferrocenes with azo dyes in their backbones. UV-vis studies showed λmax around 419 nm in DMF with a bathochromic shift to around 530 nm upon the addition of HCl.

Organoiron macromolecules containing azo dye moieties prepared in this study.  相似文献   


20.
Advancements in the area of conducting polymers have been towards their application as effective corrosion protective coatings to replace the use of heavy metals as additives in the coatings industries, which are now considered to be an environmental as well as health hazard. With the aim to utilize a sustainable resource based polymer for the development of an anti‐corrosive conducting coating material, coconut oil based conducting blend coatings of polyaniline and poly(esteramide urethane) were prepared by loading different ratios (2, 4 and 8 wt%) of polyaniline in poly(esteramide urethane). Then their physico‐chemical, thermal, morphological, conductivity and anti‐corrosive coating characteristics were investigated. The effect of a 2 year environmental aging process on the coated samples was analyzed by thermal methods as well as by corrosion studies. Results showed that the corrosion protective performance of the blend coatings was far superior than that of plane poly(esteramide urethane). These coatings showed enhanced corrosion protection in acid as well as alkaline environments upto 360 and 192 hr respectively. Conductivity of the blends was found to be in the range 2.5 × 10?5–5.7 × 10?4 S/cm?1. An increase in the thermal stability of the blend coatings and a decrease in their conductivity was noticed in the aged samples which was attributed to the crosslinking effect. The corrosion protective performance of the coatings remained almost unaffected even after 2 years of aging. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号