首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Photoemission from a semiconductor having a negative electron affinity under nonuniform illumination is investigated theoretically for stationary and pulsed excitation regimes. The maximum emission current is shown to grow exponentially with increasing ratio of the negative electron affinity Δ0 to a characteristic tunneling energy E 0, and the excitation intensity I opt corresponding to the maximum current has been determined. Excitation nonuniformity results in a weakening of the dependence of the emission current on illumination intensity near the current maximum. The quantum efficiency recovery time measured in a two-pulse excitation mode depends weakly on the illumination intensity and on its nonuniformity over the illuminated spot and is close to the relaxation time of low photovoltages.  相似文献   

2.
Electroluminescent intensity and external quantum efficiency (EQE) in ultraviolet organic light‐emitting diodes (UV OLEDs) have been remarkably enhanced by using a graded hole‐injection and ‐transporting (HIT) structure of MoO3/N,N ′‐bis(naphthalen‐1‐yl)‐N,N ′‐bis(phenyl)‐benzidine/MoO3/4,4′‐bis(carbazol‐9‐yl)biphenyl (CBP). The graded‐HIT based UV OLED shows superior short‐wavelength emis‐ sion with spectral peak of ~410 nm, maximum electroluminescent intensity of 2.2 mW/cm2 at 215 mA/cm2 and an EQE of 0.72% at 5.5 mA/cm2. Impedance spectroscopy is employed to clarify the enhanced hole‐injection and ‐transporting capacity of the graded‐HIT structure. Our results provide a simple and effective approach for constructing efficient UV OLEDs. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
We report resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness. Indirect band gap MoS2 in bulk becomes a direct band gap semiconductor in the monolayer form. New Raman modes are seen in the spectra of single‐ and few‐layer MoS2 samples which are absent in the bulk. The Raman mode at ~230 cm−1 appears for two, four and seven layers. This mode has been attributed to the longitudinal acoustic phonon branch at the M point (LA(M)) of the Brillouin zone. The mode at ~179 cm−1 shows asymmetric character for a few‐layer sample. The asymmetry is explained by the dispersion of the LA(M) branch along the Γ‐M direction. The most intense spectral region near 455 cm−1 shows a layer‐dependent variation of peak positions and relative intensities. The high energy region between 510 and 645 cm−1 is marked by the appearance of prominent new Raman bands, varying in intensity with layer numbers. Resonant Raman spectroscopy thus serves as a promising non invasive technique to accurately estimate the thickness of MoS2 layers down to a few atoms thick. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
From light-scattering studies on polybutylmethacrylate, a polymeric glass, the variation of the velocity and attenuation of thermally excited hypersonic phonons with temperature has been measured. Measurement of the temperature dependence of the ratio of the intensity of the Rayleigh line to the Brillouin lines is interpreted as due to a configurational rearrangement within the glass above the glass transition temperature, Tg . Only light scattered from longitudinal phonons was observed. The distinct change in the temperature dependence of the velocity, attenuation and intensity ratio identified the glass transition.

For samples annealed well above Tg, Tg was found to be about 0°C from the light-scattering studies, 12°C from differential scanning calorimetry (DSC), and 20°C from refractive index measurements. For an unannealed sample the behaviour of the above parameters with temperature was found to be different. Tg for the unannealed sample was 14°C from light-scattering, 18°C from DSC and 20°C from index of refraction measurements.  相似文献   

5.
We report on the infrared (IR) and Raman studies of the three isostructural quasi‐one‐dimensional cation radical salts of 3,4‐dimethyl‐tetrathiafulvalene (o‐DMTTF)2X (X = Cl, Br, and I), which all exhibit metallic properties at room temperature and undergo transitions to a semiconducting state in two steps: a soft metal‐to‐semiconductor regime change in the temperature region Tρ = 5–200 K and then a sharp phase transition at about TMI = 50 K. Polarized IR reflectance spectra (700–16 000 cm−1) and Raman spectra (50–3500 cm−1, excitation λ = 632.8 nm) of single crystals were measured as a function of temperature (T = 5–300 K) to assess the eventual formation of a charge‐ordered state below 50 K. Additionally, the temperature dependence of the IR absorption spectra of powdered crystals in KBr discs was also studied. The Raman spectra and especially the bands related to the CC stretching vibration of o‐DMTTF provide unambiguous evidence of uniform charge distribution on o‐DMTTF down to the lowest temperatures, without any modification below 50 K. However, the temperature dependence of Raman spectra indicates a regime change below about 200 K. Temperature dependence of both electronic dispersion and vibrational features observed in the IR spectra also clearly confirms the regime change below about 200 K and shows the involvement of C H···X hydrogen bonds in the electronic localization; some spectral changes can be also related with the phase transition at 50 K. Additionally, using density functional theory methods, the normal vibrational modes of the neutral o‐DMTTF0 and cationic o‐DMTTF+ species, as well as their theoretical IR and Raman spectra, were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral o‐DMTTF molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Self‐assembled organic–inorganic [C6H14N]PbI3 crystals were synthesized. The crystal structure consists of one‐dimensional semiconductor chains formed by infinite PbI6 face‐sharing octahedra aligned along the a‐axis. The organic cations are linked to the inorganic chains by N H· · ·I hydrogen bonds and act as insulator barriers. The vibrational properties of [C6H14N]PbI3 were studied using polarized Raman scattering and infrared (IR) absorption. The observed Raman and IR spectral features were identified by comparison with the vibrational properties of homologous compounds and with the vibrational wavenumbers calculated using the ab initio PM3 method. Moreover, the photoluminescence and diffuse reflectance of [C6H14N]PbI3 single crystals, along with the UV‐Vis absorption of spin‐ coated films, were measured. A strong green‐blue luminescence due to radiative recombinations of 1D excitons is observed. The Stokes shift is estimated at 70 meV. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Using an in situ method of Raman spectroscopy and resistance‐heated diamond anvil cell, the system datolite CaBSiO4(OH) – water has been investigated at simultaneously high pressure and temperature (up to Р ~5 GPa and Т ~250 °С). Two polymorphic transitions have been observed: (1) pressure‐induced phase transition or the feature in pressure dependence of Raman band wavenumbers at P = 2 GPа and constant T = 22 °С and (2) heating‐induced phase transition at T ~90 °С and P ~5 GPа. The number of Raman bands is retained at the first transition but changed at the second transition. The first transition is mainly distinguished by the changes in the slopes of pressure dependence of Raman peaks at 2 GPa. The second transition is characterized by several strong changes: the wavenumber jumps of major bands, the merging of strong doublets at 378 and 391 cm−1 (values for ambient conditions), the splitting of the intermediate‐intensity band at 292 cm−1, and the transformation of some low‐wavenumber bands at 160–190 cm−1. No spectral and visual signs of overhydration and amorphization have been observed. No noticeable dissolution of datolite in the water medium occurred at 5 GPa and 250 °С after 3 h, which corresponds to typical conditions of the ‘cold’ zones of slab subduction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Quasi-elastic Rayleigh scattering of 14·4 keV photons has been measured on supercooled liquid glycerol at -30°C and 0°C by employing the Mössbauer effect. Total scattered intensity, quasi-elastically scattered intensity I q and energy width of I q(k, ω) have been determined for k=0·6 to 4·2 Å-1. The molecular motion is modelled as: random-walk diffusional motions for the centre-of-mass translation and for the orientation of independent rigid molecules, plus fast-bounded translational jitter (vibration). The model parameters are evaluated. The temperature dependence of the translational diffusion constant corresponds to an activation energy of 12 kcal/mol. Comparison is made especially with N.M.R. results for rotational motion. The effect of orientational jitter (libration) is considered and its possible influence on nuclear magnetic relaxation is pointed out.  相似文献   

9.
本文报导了一种测量光耦合效率η的新实验方法。这个方法是建立于p-n结短路光电流原理上的。本文推导出适合于行波激光放大器的光耦合效率的公式。短路光电流用一检流计测量,利用公式获得光耦合效率的实验值。利用实验所测光耦合效率,测量了行波激光放大器的增益随注入电流变化的规律,其结果和实验符合。另外本文还介绍了在脉冲注入电流条件下测行波半导体激光放大器增益的实验方法。  相似文献   

10.
The dependence of manganese-ion intracenter-luminescence intensity on optical excitation level has been studied in the Cd1−x MnxTe dilute magnetic semiconductor with 0.4<x<0.7. It is shown that the intracenter luminescence saturates due to effective nonlinear quenching already at low excitation levels. Mechanisms are proposed which can provide nonlinear quenching and offer a qualitative explanation for the temperature dependence of the luminescence saturation in samples with different manganese concentrations. Fiz. Tverd. Tela (St. Petersburg) 41, 49–53 (January 1999)  相似文献   

11.
It is shown that identical synchronization of two chaotic semiconductor lasers can be achieved by injection of a common optical signal with randomly varying phase. An optical signal with randomly modulated phase is injected into two semiconductor lasers which have chaotic oscillations due to optical feedback. Strong correlation between complex intensity oscillations of the two lasers is observed even though the intensity of the common injection signal is constant. Characteristic properties of this type of synchronization are shown, in particular, the dependence of the synchronization threshold on the injection strength and the rate of phase modulation, and the dependence of the intensity correlation on the difference in phase of optical feedback.  相似文献   

12.
《X射线光谱测定》2006,35(3):165-168
Cd1?xZnxO thin films were prepared by spray pyrolysis in air atmosphere on a glass substrate at 250 °C. The Zn content in Cd1?xZnxO films was varied from x = 0 to 0.60. Structural, electrical and optical properties of Cd1?xZnxO films were investigated by x‐ray diffraction, electrical resistivity and optical transmittance spectra, respectively. As the Zn content in Cd1?xZnxO thin films increased, the preferred orientation of the films did not change, only the peak intensity of the planes decreased. In addition to the peaks of CdO, peaks of ZnO were observed in the film with x = 0.6. The resistivity of Cd1?xZnxO thin films increased with increasing Zn content. Transmittance spectra studies of films were carried out in the 190‐1100 nm wavelength range and the results showed that the bandgap energy range varied from 2.42 to 3.25 eV. In addition, alloying effect on the Kβ/Kα intensity ratio in Cd1?xZnxO semiconductor thin films was studied. It was found that the Kβ/Kα intensity ratio is changed by alloying effects in Cd1?xZnxO semiconductor thin films for different composition of x. The results were compared with the theoretical values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The advent of highly intense wiggler and undulator beamlines has reintroduced the problem of X‐ray radiation damage in protein crystals even at cryogenic temperatures (100 K). Although cryocrystallography can be utilized for the majority of protein crystals, certain macromolecular crystals (e.g. of viruses) suffer large increases in mosaicity upon flash cooling and data are still collected at room temperature (293 K). An alternative mechanism to cryocooling for prolonging crystal lifetime is the use of radioprotectants. These compounds are able to scavenge the free radical species formed upon X‐ray irradiation which are thought to be responsible for part of the observed damage. Three putative radioprotectants, ascorbate, 1,4‐benzoquinone and 2,2,6,6‐tetramethyl‐4‐piperidone (TEMP), were tested for their ability to prolong lysozyme crystal lifetimes at 293 K. Plots of relative summed intensity against dose were used as a metric to assess radioprotectant ability: ascorbate and 1,4‐benzoquinone appear to be effective, whereas studies on TEMP were inconclusive. Ascorbate, which scavenges OH radicals (kOH = 8 × 109 M?1 s?1) and electrons with a lower rate constant (ke‐(aq) = 3.0 × 108 M?1 s?1), doubled the crystal dose tolerance, whereas 1,4‐benzoquinone, which also scavenges both OH radicals (kOH = 1.2 × 109 M?1 s?1) and electrons (ke‐(aq) = 1.2 × 1010 M?1 s?1), offered a ninefold increase in dose tolerance at the dose rates used. Pivotally, these preliminary results on a limited number of samples show that the two scavengers also induced a striking change in the dose dependence of the intensity decay from a first‐order to a zeroth‐order process.  相似文献   

14.
A two‐dimensional imaging system of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐4 of the Synchrotron Radiation Center of Ritsumeikan University. The system mainly consists of an ionization chamber for I0 measurement, a sample stage, and a two‐dimensional complementary metal oxide semiconductor (CMOS) image sensor for measuring the transmitted X‐ray intensity. The X‐ray energy shift in the vertical direction, which originates from the vertical divergence of the X‐ray beam on the monochromator surface, is corrected by considering the geometrical configuration of the monochromator. This energy correction improves the energy resolution of the XAFS spectrum because each pixel in the CMOS detector has a very small vertical acceptance of ~0.5 µrad. A data analysis system has also been developed to automatically determine the energy of the absorption edge. This allows the chemical species to be mapped based on the XANES feature over a wide area of 4.8 mm (H) × 3.6 mm (V) with a resolution of 10 µm × 10 µm. The system has been applied to the chemical state mapping of the Mn species in a LiMn2O4 cathode. The heterogeneous distribution of the Mn oxidation state is demonstrated and is considered to relate to the slow delocalization of Li+‐defect sites in the spinel crystal structure. The two‐dimensional‐imaging XAFS system is expected to be a powerful tool for analyzing the spatial distributions of chemical species in many heterogeneous materials such as battery electrodes.  相似文献   

15.
《X射线光谱测定》2005,34(1):64-68
Electron shakeup and shakeoff probabilities accompanying inner‐shell ionization of atoms were calculated for K‐, L‐ and M‐shell electrons using hydrogenic wavefunctions. The dependence of shake probabilities on atomic number Z is estimated. It is found that both shakeoff and shakeup probabilities are proportional to 1/Z2. Based on this Z‐dependence, the shakeup‐plus‐shakeoff probabilities are expressed in a simple analytical form with two parameters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Thermal cross‐linking of poly(vinyl methyl ether) (PVME) in the absence of cross‐linking agent, was detected rheologically. The linear viscoelastic properties of PVME were found to be greatly changed by the onset of the cross‐linking process. The viscoelastic material functions, such as dynamic shear moduli, G′ and G″, complex shear viscosity, η*, and loss tangent, tan δ, were found to be sensitive to the structure changes during the cross‐linking process and the formation of a three‐dimensional polymer network. At the onset temperature of the cross‐linking process, an abrupt increase in G′, G″, and η* (several orders of magnitude) during dynamic temperature ramps (2°C/min heating rate) was observed with some frequency dependence. The temperature dependence of tan δ was found to be frequency independent at the gel‐point, T gel, that is, the crossover in tan δ regardless of the value of frequency can be taken as an accurate method for determination of T gel. The coincidence of G′ and G″ at the gel‐point cannot be considered a general method for evaluation of T gel due to its high frequency dependence, that is, T gel determined from the crossover of G′ and G″ in the dynamic temperature ramp at 1 rad/sec is about 20°C less than at 100 rad/sec. Furthermore, a dramatic increase in η0 above the minimum (“v” shape) was observed at T = T gel in agreement with the value obtained from tan δ vs. T (190°C). The time–temperature‐superposition principle was found to be valid only for temperatures lower than the T gel (190°C); the principle failed at T ≥ 190°C. This was clearly seen in the low‐frequency region as a deviation from the terminal slope in the G′ curve. Similar behavior was observed in the modified Cole–Cole analyses (G″ vs. G′) that is, the curves start to deviate at 190°C.  相似文献   

17.
We report on the first‐order and second‐order Raman scattering (SORS) by longitudinal optical (LO) phonons in perovskite semiconductor CsSnI3. The intensity of SORS is stronger than that of the first order. The spectral line shape of SORS is asymmetric and much broader than that of the first order. It is identified that the strong SORS intensity is attributable to the triply enhanced resonant process, which is naturally implemented through the peculiar band structure of this semiconductor compound having two adjacent parallel conduction bands with a separation close to the energy of two LO phonons. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

19.
We report on solution processable organic field effect transistors prepared using a poly(3‐hexylthiophene)–ZnO nanoparticles composite as channel semiconductor material and cross‐linked polyvinyl alcohol as gate insulator. Our transistors show a field effect mobility of 0.35 ± 0.06 cm2/V s, threshold voltage of –1.30 ± 0.11 V, and Ion/Ioff ratio of (1.0 ± 0.1) × 103. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The energy‐dependent scintillation intensity of Eu‐doped fluorozirconate glass‐ceramic X‐ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu‐doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X‐ray excited scintillation is mainly due to the 5d–4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X‐ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X‐ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K‐edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号