首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure, thermal properties, and influence of layered double hydroxide (LDH) fillers on photocrosslinking behavior of high‐density polyethylene (HDPE)/LDH nanocomposites have been studied in the present article. The X‐ray diffraction and transmission electron microscopy analysis demonstrate that the completely exfoliated HDPE/LDH nanocomposites can be obtained by controlling the organomodified LDH loading via melt‐intercalation. The data from the thermogravimetric analysis show that the HDPE/LDH nanocomposites have much higher thermal stability than HDPE sample. When the 50% weight loss was selected as a comparison point, the decomposition temperature of HDPE/LDH sample with 5 wt % LDH loading is ~40 °C higher than that of HDPE sample. The effects of UV‐irradiation on the HDPE/LDH nanocomposites show that the photoinitiated crosslinking can destroy the completely exfoliated structure to form the partially exfoliated structure, which decreased the thermal stability of the nanocomposites. However, the thermal stability of photocrosslinked samples can increase with increasing the UV‐irradiation time. The effect of LDH loading on the gel content of UV‐irradiated nanocomposites shows that the LDH materials can greatly absorb the UV irradiation and thus decrease the crosslinking efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3165–3172, 2006  相似文献   

2.
In this work, a comprehensive study of the rheological behavior under shear and isothermal and nonisothermal elongational flow of low density polyethylene (LDPE) and ethylene‐vinyl acetate copolymer (EVA) based nanocomposites was reported to evaluate their “filmability”, that is, the ability of these material to be processed for film forming applications. The influence of two different kinds of organoclay – namely Cloisite 15A and Cloisite 30B – and their concentration was evaluated. The presence of filler clearly affects the rheological behavior in oscillatory state of polyolefin‐based nanocomposites but the increase of complex viscosity and the shear thinning are not dramatic. A larger strain‐hardening effect in isothermal elongational flow is shown by the nanocomposites compared to that of the pure matrix, particularly for EVA based nanocomposites. The melt strength measured under nonisothermal elongational flow increases in the presence of the nanofiller, while the drawability is only slightly lower than that measured for the neat matrix. Moreover, the rheological behavior under nonisothermal elongational flow of EVA‐based nanocomposites is similar for both nanoclays used. Differently, LDPE‐based nanocomposites show a strong dependence on the type of organoclay. Finally, the mechanical properties of the materials were measured by tensile tests. They revealed that the presence of the filler provokes, in all the cases, an increase of the rigidity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 344–355, 2010  相似文献   

3.
《先进技术聚合物》2018,29(2):982-988
Shape‐memory polymers are important smart materials with potential applications in smart textiles, medical devices, and sensors. We prepared trans‐1,4‐polyisoprene, low‐density polyethylene (LDPE), and high‐density polyethylene (HDPE) shape‐memory composites using a simple mechanical blend method. The mechanical, thermal, and shape‐memory properties of the composites were studied. Our results showed that the shape‐memory composites could memorize 3 temporary shapes, as revealed by the presence of broad melting transition peaks in the differential scanning calorimetry curves. In the trans‐1,4‐polyisoprene/LDPE/HDPE composites, the cross‐linked network and the crystallization of the LDPE and HDPE portions can serve as fixed domains, and all crystallizations can act as reversible domains. We proposed a schematic diagram to explain the vital role of the cross‐linked network and the crystallization in the shape‐memory process.  相似文献   

4.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

5.
《中国化学》2017,35(12):1875-1880
To improve the dispersion of carbon nanotubes (CNTs) and flame retardancy of layered double hydroxide (LDH) in epoxy resin (EP), organic nickel‐iron layered double hydroxide (ONiFe‐LDH‐CNTs) hybrids were assembled through co‐precipitation. These hybrids were further used as reinforcing filler in EP. EP/ONiFe‐LDH‐CNTs nanocomposites containing 4 wt% of ONiFe‐LDH‐CNTs with different ratios of ONiFe‐LDH and CNTs were prepared by ultrasonic dispersion and program temperature curing. The structure and morphology of the obtained hybrids were characterized by different techniques. The dispersion of nanofillers in the EP matrix was observed by transmission electron microscopy (TEM). The results revealed a coexistence of exfoliated and intercalated ONiFe‐LDH‐ CNTs in polymer matrix. Strong combination of the above nanofillers with the EP matrix provided an efficient thermal and flame retardant improvement for the nanocomposites. It showed that EP/ONiFe‐LDH‐CNTs nanocomposites exhibited superior flame retardant and thermal properties compared with EP. Such improved thermal properties could be attributed to the better homogeneous dispersion, stronger interfacial interaction, excellent charring performance of ONiFe‐LDH and synergistic effect between ONiFe‐LDH and CNTs.  相似文献   

6.
The paper presents the electrostatic charge dissipative (ESD) properties of the conducting copolymers of aniline (AN) and 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) blended with low‐density polyethylene (LDPE). The copolymers of aniline and ANSA were synthesized under different reaction conditions. Blending of copolymers with LDPE was carried out in twin screw extruder by melt blending method by loading 0.5 and 1.0 wt% of the conducting copolymer in LDPE matrix. The mechanical properties of the blended films depend on the incorporation of copolymer in the LDPE matrix. The morphology of copolymer–LDPE blend was studied by scanning electron microscopy. The conductivity of the blown film of poly(AN‐co‐ANSA)/LDPE blend was found to be in the range of 10?6–10?11 S/cm, showing its potential use as antistatic bag for the encapsulation of electronic equipments. The static decay time of the film was found to be of the order of 0.1–1.9 sec on recording the decay time from 5000 to 500 V. Static charge measurements carried out on the films show that no charge is present on the surface. The level of interaction between the copolymers and the matrix polymer was determined by the FTIR spectra, blend morphology, electrical conductivity, and thermal analysis. The effect of the morphology on electrical and antistatic behavior of copolymers has also been investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Low‐density polyethylene (LDPE) is the preferred type of polyolefin for many medical and electrical applications because of its superior purity and cleanliness. However, the inferior thermo‐mechanical properties as compared to, for example, high‐density polyethylene (HDPE), which arise because of the lower melting temperature of LDPE, constitute a significant drawback. Here, we demonstrate that the addition of minute amounts of HDPE to a LDPE resin considerably improves the mechanical integrity above the melting temperature of LDPE. A combination of dynamic mechanical analysis and creep experiments reveals that the addition of as little as 1 to 2 wt% HDPE leads to complete form stability above the melting temperature of LDPE. The investigated LDPE/HDPE blend is found to be miscible in the melt, which facilitates the formation of a solid‐state microstructure that features a fine distribution of HDPE‐rich lamellae. The absence of creep above the melting temperature of LDPE is rationalized with the presence of tie chains and trapped entanglements that connect the few remaining crystallites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 146–156  相似文献   

8.
Low‐density polyethylene (LDPE) filled with carbon black (CB) and carbon fiber (CF) composites were prepared by a conventional melt‐mixing method. The effects of a mixture of CB and CF on the positive‐temperature‐coefficient (PTC) effect and the negative‐temperature‐coefficient (NTC) effect, as well as the percolation threshold, were examined in detail. A synergy effect between CB and CF occurred, in that continuous conductive pathways formed within the CB/CF‐filled composite. The percolation threshold was moved to a reduced filler content with the addition of CF to an LDPE/CB composite. A model was proposed to explain the difference in the PTC behavior of composites containing CB and CF and composites containing only CB or CF. In addition, the NTC effect was weakened with a mixture of CB and CF, and a relatively small radiation dose was required to eliminate the NTC phenomenon in LDPE/CB/CF composites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3094–3101, 2003  相似文献   

9.
Summary: A low‐density polyethylene (LDPE)/millable polyurethane (PU)/organoclay ternary nanocomposite was successfully prepared. The nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The nanocomposites, as evidenced by XRD, are intercalated. The heat shrinkable behavior of the nanocomposites, as well as their pristine counterparts, was studied. It was observed that heat shrinkability decreases with increased filler content. The tensile strength and the tensile modulus of the nanocomposites are higher than their pristine counterparts.

The heat shrinkability of the unfilled LDPE/millable PU blend is highest and it decreases with increased nanofiller content.  相似文献   


10.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

11.
Chen  Wei  Qu  Bao‐Jun 《中国化学》2003,21(8):998-1000
An organo‐modified MgAl‐layered double hydroxide (OMgAl‐LDH) was successfully exfoliated in the xylene solution of polyethylene‐grafted‐maleic anhydride (PE‐g‐MA) under re‐fluxing condition. A PE‐g‐MA/MgAl‐LDH exfoliation nanocomposite was formed after the precipitation of PE‐g‐MA from the dispersion system. The structure and thermal property of the PE‐g‐MA/MgAl‐LDH exfoliation nanocomposite were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry analysis (TGA). The disappearance of d001 XRD peak of OMgAl‐LDH at 20 = 3.2° suggests that the MgAl hydroxide sheets are exfoliated in the nanocomposite. The TEM image shows that the MgAl hydroxide sheets of less than 70 nm in length or width are exfoliated and dispersed disorderly in PE‐g‐MA matrix. TGA profiles indicate that the PE‐g‐MA/MgAl‐LDH nanocomposite with 5 wt% OMgAl‐LDH loading shows a faster charring process in temperature range from 210 to 390 °C and a greater thermal stability beyond 390 °C than PE‐g‐MA does. The decomposition temperature of the nanocomposite is 25 °C higher than that of PE‐g‐MA as measured at 50% weight loss. The PE‐g‐MA/MgAl‐LDH nanocomposite is promising for application of flame‐retardant polymeric materials.  相似文献   

12.
Microporous and highly hydrophobic low‐density polyethylene (LDPE) hollow fiber membranes were successfully prepared via a solvent‐free method, combining melt‐extrusion, and salt‐leaching techniques. NaCl particles with particle size of 5–10 µm were mixed with LDPE pellets to produce a blend of 35, 40, 50, 60, 65 and 68 wt% of salt. A microporous structure was produced by leaching the salt particles from the hollow fiber matrix via immersion in water at 60°C. The fabricated membranes were then characterized in terms of morphology, porosity and pore size distribution, surface roughness, and hydrophobicity, as well as mechanical properties. The remarkable increase in the water contact angles from 98° for LDPE hollow fibers fabricated without the addition of salt (blank sample) to 130° for membranes fabricated with initial salt content of 68 wt% is mainly attributed to the rough surface structure, comprising a large number of micropapillas produced by removing the imbedded salt crystals. The increase in surface roughness and porosity of hollow fiber membranes with increasing initial salt content was confirmed by scanning electron microscope and atomic force microscopy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
《先进技术聚合物》2018,29(1):302-309
A novel superhydrophobic surface based on low‐density polyethylene (LDPE)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic vulcanizate (TPV) was successfully fabricated where the etched aluminum foil was used as template. The etched aluminum template, consisted of countless micropores and step‐like textures, was obtained by metallographic sandpaper sanding and the subsequent acid etching. The surface morphology and the hydrophobic properties of the molded TPV surface were researched by using field emission scanning electron microscope and contact angle meter, respectively. From the microstructure observation of the superhydrophobic LDPE/EPDM TPV surface, the step‐like textures obtained via molding with etched aluminum foil template and a large number of fiber‐like structures resulted from the plastic deformation of LDPE matrix could be found obviously. The obtained TPV surface exhibited remarkable superhydrophobicity, with a contact angle of 152.0° ± 0.7° and a sliding angle of 3.1° ± 0.8°.  相似文献   

14.
Thermomechanical properties and crystallization behavior of poly(ethylene terephthalate) (PET) nanocomposites containing layered double hydroxide (LDH) were investigated. To enhance the compatibility between PET matrix and LDH, dimethyl 5‐sulfoisophthalate (DMSI) anion intercalated LDH (LDH‐DMSI) was synthesized by coprecipitation method, and its structure was confirmed by Fourier transform infrared (FTIR) spectrometer and X‐ray diffraction (XRD) measurements. Then, PET nanocomposites with LDH‐DMSI content of 0, 0.5, 1.0, and 2.0 wt% were prepared by in‐situ polymerization. The dispersion morphologies were observed by transmission electron microscopy (TEM) and XRD, showing that LDH‐DMSI was exfoliated in PET matrix. Thermal and mechanical properties, such as thermal stability, tensile modulus, and tensile yield strength of nanocomposites, were enhanced by exfoliated LDH‐DMSI nanolayers. However, elongation at break was drastically decreased with LDH loading owing to the increased stiffness and microvoids. The effect of exfoliated nanolayers, which acted as a nucleating agent confirmed by differential scanning calorimeter (DSC), on the microstructural parameters during isothermal crystallization, was analyzed by synchrotron small‐angle X‐ray scattering (SAXS). It is believed that nanocomposites could be crystallized more easily owing to the increased nucleation sites, which lead to the decrease of average amorphous region size and the long period with the increase of LDH‐DMSI content. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 28–40, 2007  相似文献   

15.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The influence of electron beam (EB) irradiation and organoclay (OC) loading on the properties of low‐density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends was investigated. The samples were subjected to the EB irradiation with the dose values of 50 and 250 kGy. X‐ray diffraction (XRD), gel content, mechanical, thermal, and electrical properties were utilized to analyze the characteristics of the LDPE/EVA blends with and without OC at different irradiation dosages. Gel content analysis showed that the OC promotes considerably the insoluble part so that the LDPE/EVA blends filled with OC become fully crosslinked at 250 kGy; possibly through the formation of further crosslinks between OC and polymer chains. The samples irradiated by EB showed enhanced mechanical properties due to the formation of three‐dimensional networks. In addition, thermogravimetric analysis indicated that combined OC loading and radiation‐induced crosslinking improved thermal stability of LDPE/EVA blends considerably. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   

18.
Shape memory composites of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon nanotubes (CNTs) were introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal, and shape memory properties of the TPI/LDPE/CNTs composites were investigated in this study. In these composites, the cross‐linked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a domain of reversible shape memory behavior. We found that CNTs acted as not only reinforced fillers but also nucleation agents, which improved the crystalline degree of the TPI and LDPE portions of the composites. Compared with the properties at the other CNT doses, the mechanical properties of the TPI/LDPE composites when the CNT dose was 1 phr were improved significantly, showing excellent shape memory properties (Rf = 97.85%, Rr = 95.70%).  相似文献   

19.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

20.
杜隆超  瞿保钧 《中国化学》2006,24(10):1342-1345
The interlayer surface of MgAl layered double hydroxide (MgAl-LDH) was modified by exchanging about half of the interlayer nitrate anions by dodecyl sulfate anions (DS) to get MgAl(H-DS) LDH, and then the MgAl(H-DS) was melt intercalated by LLDPE to get the LLDPE/MgAl-LDH exfoliation nanocomposites. The samples were characterized by Fourier transform infrared (PTIR) spectroscopy, X-ray diffraction (XRD), ion chromatography, transmission electron microscopy (TEM), and thermogravimetry analysis (TGA). The nanoscale dispersion of MgAl-LDH layers in the LLDPE matrix was verified by the disappearance of (001) XRD reflection of the modified MgAl-LDH and by the TEM observation. The TGA profiles of LLDPE/MgAl-LDH nanocomposites show a faster charring process between 210 and 370 ℃ and a higher thermal stability above 370 ℃than LLDPE. The decomposition temperature of the nanocomposites with 10 wt% MgAl(H-DS) can be 42 ℃ higher than that of LLDPE at 40% weight loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号