首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene glycol)‐based networked polymers that had lithium sulfonate salt structures on the network were prepared by heating a mixture of poly(ethylene glycol) diglycidyl ether (PEGGE), poly(ethylene glycol) bis(3‐aminopropyl) terminated (PEGBA), and an ionic epoxy monomer, lithium 3‐glycidyloxypropanesulfonate (LiGPS). Flexible self‐standing networked polymer films showed high thermal stability, low crystallinity, low glass transition temperature, and good mechanical strength. The materials were ion conductive at room temperature even under a dry condition, although the ionic conductivity was rather low (10?6 to 10?5 S/m). The ionic conductivity increased with the increase in temperature to above 1 × 10?4 S/m at 90 °C. The film samples became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The samples swollen in PC showed higher ionic conductivity (ca.1 × 10?3 S/m at room temperature), and the samples swollen in LiTFSI/PC showed much higher ionic conductivity (nearly 1 S/m at room temperature). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3113–3118, 2010  相似文献   

2.
Ionic‐liquid‐containing polymer films were prepared by swelling poly(ethylene glycol)‐based networked polymers having lithium salt structures with an ionic liquid, 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI), or with an EMImFSI solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Their fundamental physical properties were investigated. The networked polymer films having lithium salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonate or lithium 3‐(glycidyloxypropanesulfonyl)(trifluoromethanesulfonyl)imide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained ionic‐liquid‐containing films were flexible and self‐standing. They showed high ionic conductivity at room temperature, 1.16–2.09 S/m for samples without LiTFSI and 0.29–0.43 S/m for those with 10 wt % LiTFSI. Their thermal decomposition temperature was above 220 °C, and melting temperature of the ionic liquid incorporated in the film was around ?16 °C. They exhibited high safety due to good nonflammability of the ionic liquid. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Methacrylate‐based networked polymers having ionic liquid structures were prepared by radical copolymerization of methyl methacrylate (MMA) with multifunctional crosslinkers: ethyleneglycol dimethacrylate (EGDMA), trimethylolpropane trimethacrylate (TMPTMA), or triethyleneglycol dimethacrylate (TEGDMA), in the presence of 1‐ethyl‐3‐methylethyl‐1‐imidazolium bis(trifluoromethane)sulfonyl imide (EMImTFSI). The fundamental physical properties of several film samples prepared by varying the monomer composition and ionic liquid content were investigated. The obtained materials became turbid with increasing crosslinker content and ionic liquid content. Their ionic conductivity increased with increasing ionic liquid content, while it was almost independent of the crosslinker content. EGDMA‐derived materials and TMPTMA‐derived materials showed higher ionic conductivity than TEGDMA‐derived materials. TMPTMA‐derived materials showed higher thermal stability than EGDMA or TEGDMA‐derived materials. EGDMA and TMPTMA‐derived materials were stiffer than the TEGDMA‐derived materials. The elastic modulus of the film samples increased but the film became more brittle with the increase of crosslinker content. Scanning electron microscopy and atomic force microscopy observation revealed that phase separation of networked polymers and ionic liquid occurred in the highly crosslinked samples, and the phase separation structures became larger in scale with the increase of crosslinking density. This phase separation was considered to have a strong effect on the mechanical properties of the film samples. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
Graft copolymers formed by anchoring poly(ethylene glycol) (PEG) chains to conjugated polythiophene have been prepared by copolymerizing two compounds: unsubstituted α‐terthiophene (Th3) and a thiophene‐derived macromonomer having an α‐terthiophene conjugated sequence and one Th3 bearing a PEG chain with molecular weight of 2000 as substitute at the 3‐position of the central heterocycle (Th3‐PEG2000). The grafting ratio of the resulting copolymers (PTh3*g‐PEG), which were obtained using 75:25 and 50:50 Th3‐PEG2000:Th3 weight ratios, is significantly smaller than that of copolymers derived from polymerization of macromonomers consisting of a α‐pentathiophene sequence in which the central ring bears a PEG chain of Mw = 2000 (PTh5g‐PEG). The electroactivity and electrochemical stability of PTh3*g‐PEG is not only higher than that of PTh5g‐PEG but also higher than that of PTh3, the latter presenting a very compact structure that makes difficult the access and escape of dopant ions into the polymeric matrix during the redox processes. Furthermore, the optical π‐π* lowest transition energy of PTh3*g‐PEG is lower than that of both PTh5g‐PEG and PTh3. These properties, combined with suitable wettability and roughness, result in an excellent behavior as bioactive platform of PTh3*g‐PEG copolymers, which are more biocompatible, in terms of cellular adhesion and proliferation, and electro‐compatible than PTh5g‐PEG. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 239–252  相似文献   

5.
A novel series of thiazolothiazole (Tz)‐based copolymers, poly[9,9‐didecylfluorene‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P1), poly[9,9‐dioctyldibenzosilole‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P2), and poly[4,4′‐bis(2‐ethylhexyl)‐dithieno[3,2‐b:2′,3′‐d]silole‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P3), were synthesized for the use as donor materials in polymer solar cells (PSCs). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results suggest that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were in the range of 1.80–2.14 eV. Under optimized conditions, the Tz‐based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range of 2.23–2.75% under AM 1.5 illumination (100 mW/cm2). Among the three copolymers, P1, which contained a fluorene donor unit, showed a PCE of 2.75% with a short‐circuit current of 8.12 mA/cm2, open circuit voltage of 0.86 V, and a fill factor (FF) of 0.39, under AM 1.5 illumination (100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Triblock copolymer poly(ethylene glycol)‐poly(alkylene phosphate)‐poly(ethylene glycol) was prepared by first reacting hexamethylene glycol with dimethyl‐H‐phosphonate at conditions of transesterification and then replacing the CH3OP(O)(H)O‐… end‐groups by monomethyl ether of poly(ethylene glycol). The course of reaction was studied by 31P NMR indicating complete conversion. After oxidation the poly(alkylene H‐phosphonate was converted into the final triblock polyphosphate. This triblock copolymer was used as a modifier of CaCO3 crystallization. Unusual semi open empty spheres resulted, composed of small crystallites of the size (diameter) equal to 40–90 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 650–657, 2005  相似文献   

7.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   

8.
We report the synthesis of a water‐soluble diblock copolymer composed of polysulfonic diphenyl aniline (PSDA) and poly(ethylene oxide) (PEO), which was prepared by reacting an amine‐terminated PSDA and tosylate PEO (PEO‐Tos). First, a HCl‐mediated polymerization of sulfonic diphenyl aniline monomer with the formation of HCl‐doped PSDA was carried out. After its neutralization and reduction, a secondary amine‐functionalized PSDA was obtained. Second, PEO‐Tos was synthesized via the tosylation of the monohydroxyl PEO methyl ether with tosylol chloride. Diblock copolymers with various PEO segment lengths (PSDA‐b‐PEO‐350 and PSDA‐b‐PEO‐2000) were obtained with PEO‐350 [number‐average molecular weight (Mn) = 350] and PEO‐2000 (Mn = 2000). The prepolymers and diblock copolymers were characterized by Fourier transform infrared spectroscopy, NMR, mass spectrometry, and ultraviolet–visible light. They had relatively low conductivities, ranging from 10?6 to 10?3 S/cm, because of the withdrawing effect of the sulfonic group as well as the steric effects of the bulky aromatic substitutuents at the N sites of the polyaniline backbone and of the PEO block. These polymers were self‐doped, and an intermolecular self‐doping was suggested. The external doping was, however, more effective. The self‐doping induced aggregation in water among the PSDA backbones, which was also stimulated by the presence of hydrophilic PEO blocks. Furthermore, the electrical conductivities of the diblock copolymers were strongly temperature‐dependent. PSDA‐b‐PEO‐2000 exhibited about one order of magnitude increase in conductivity upon heating from 32 to 57 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2179–2191, 2004  相似文献   

9.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

10.
Novel polymeric derivatives of various average molecular weights bearing tributyltin carboxylate moieties as terminal groups have been prepared by esterification with bis(tributyltin) oxide of the corresponding poly(ethylene glycol)s functionalized with dimethylenecarboxylic end groups. Low‐molecular‐weight compounds have also been synthesized, with the aim of investigating the influence of the polymeric chain on tin properties. As investigated by Sn NMR and Fourier transform infrared, the metal center appears to be completely tetracoordinated in chloroform solution at room temperature, whereas at low temperature, the tin atom undergoes a fast exchange between intramolecular pentacoordination with the ethereal oxygen atoms and the unassociated form. In the solid state, even at room temperature, all the polymeric products exhibit both tetracoordination and pentacoordination at tin, the latter achieved by interaction with both ethereal and carbonyl oxygens. The thermal behavior of the series of compounds indicates the presence of crystalline domains in the material, which can be ascribed either to intermolecular interactions at tin, giving rise to organometal aggregates, or to the formation of an ordered phase induced by the presence of the macromolecular chain, depending on the more or less elevated relative concentration of the organotin moieties in the sample. These findings are also confirmed by the X‐ray diffractions patterns of the investigated products. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3091–3104, 2005  相似文献   

11.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

12.
Self‐standing films of (meth)acrylate‐based polymer gel electrolytes with high ionic liquid content (80 wt %) were prepared by in situ thermally or photo induced radical copolymerization of mono‐functional and di‐functional (meth)acrylates in an ionic liquid in the presence/absence of a lithium salt. Their ionic conductivity, thermal property, mechanical property, and flammability were examined. 1‐Ethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (EMImTFSI) or 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) was used as the ionic liquid, and lithium bis(trifluoromethanesulfonyl)imide LiTFSI was used as the lithium salt. The obtained films were semitransparent and flexible with good to moderate thermal stability and mechanical strength with high ionic conductivity. The EMImFSI‐containing gel electrolytes showed higher ionic conductivity than the corresponding EMImTFSI‐containing gel electrolytes. The ionic conductivity in the acrylate‐based gel electrolytes was slightly increased by addition of lithium salt, while that in the corresponding methacrylate‐based electrolytes was decreased significantly. The flame test showed the ionic liquid containing networked polymer gel electrolytes to have low if any flammability and was therefore confirmed to be highly safe. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
14.
A copolymer of 1‐(4‐fluorophenyl)‐2,5‐di(thiophen‐2‐yl)‐1H‐pyrrole (FPTP) with 3,4‐ethylene dioxythiophene (EDOT) was electrochemically synthesized and characterized. While poly(FPTP) (P(FPTP)) has only two colors in its oxidized and neutral states (blue and yellow), its copolymer with EDOT has five different colors (purple, red, light gray, green, and blue). Electrochromic devices based on P(FPTP‐co‐EDOT) and poly(3,4‐ethylenedioxythiophene) (PEDOT) were constructed and characterized. The oxidized state of the device shows blue color whereas it shows purple for the reduced state. At several potentials the device has good transparency with green and gray colors. Maximum contrast (Δ%T) and switching time of the device were measured as 23% and 1.1 s at 555 nm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4496–4503, 2007  相似文献   

15.
Two neutral precursor conjugated copolymers based 2,7‐diethynylfluorene and 3,6‐diethynylcarbazole units in the main chain ( PFC and PF2C ) were prepared by Hay coupling polymerization. Their cationic copolymers ( CPFC and CPF2C ) were prepared by the methylation of their diethylpropylamino groups with CH3I. For comparison, neutral conjugated homopolymers of 2,7‐diethynylfluorene ( PF ), 3,6‐diethynylcarbazole units ( PC ) and their cationic polymers ( CPF and CPC ) were also prepared with the same method. A comparative study on the optical properties of cationic polymers CPFC and CPF2C in DMF and DMF/H2O showed that they underwent water‐induced aggregation. The spectral behaviors of CPFC and CPF2C with calf thymus DNA showed that a distinct fluorescent quenching took place with minute addition of CT DNA (3.3 × 10?13 M). The results showed that the polymers would be promising biosensor materials for sensitive detection of DNA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4168–4177, 2010  相似文献   

16.
Conducting polyaniline‐poly(ethylene oxide) blends were prepared from their aqueous solutions. The blends displayed an electrical conductivity percolation threshold as low as 1.83 wt % of polyaniline loading. As demonstrated by scanning electron microscopy, polarized optical microscopy, and wide‐angle X‐ray diffraction studies, the conducting polyaniline took a fibrillar morphology in the blend, and it existed only in the amorphous phase of poly(ethylene oxide). A three‐phase model combining morphological factors instead of a two‐phase model was proposed to explain the low‐conductivity percolation threshold. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 605–612, 2002; DOI 10.1002/polb.10114  相似文献   

17.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

18.
New through‐space cyano‐substituted poly(p‐arylenevinylene)s containing a [2.2]paracyclophane unit were synthesized by the Knoevenagel reaction. Polymers 5 and 7 have cyano groups at α‐positions and β‐positions from the dialkoxyphenylene unit, respectively. Their optical and electrochemical behaviors were investigated in detail in comparison with their model compounds. Polymers 5 and 7 exhibited through‐space conjugation via the cyclophane units. Polymer 5 showed greenish blue emission (λmax = 477 nm) in diluted solution with fluorescence quantum efficiency (?F) of only 0.007, whereas polymer 7 emitted in the bluish green region (λmax = 510 nm) with ?F of 0.32. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5979–5988, 2009  相似文献   

19.
Polyanilines soluble in an aqueous basic medium were synthesised by copolymerization of aniline (ANI) with both 2 and 3‐aminobenzoic acids (ABA). Different composition copolymers were prepared by varying the ANI/ABA feed ratio. Poly(aniline‐co‐2‐aminobenzoic acid) (PANI2ABA) and poly(aniline‐co‐3‐aminobenzoic acid) (PANI3ABA) displayed differences in their properties, such as specific charge and fluorescence behavior because the reactivity of 2‐aminobenzoic (2ABA) and 3‐aminobenzoic (3ABA) acids are very different. The new materials were characterized by X‐ray photoelectron, Fourier transform infrared, and Raman spectroscopies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5587–5599, 2004  相似文献   

20.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号