首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
纳米CaCO_3/相容剂/PP中的界面相互作用研究   总被引:1,自引:0,他引:1  
采用不同相容剂(PP-g-MAH、POE-g-MAH和EVA-g-MAH)制备了不同界面相互作用的纳米CaCO3(CC)/相容剂/PP体系,研究了相容剂/PP和相容剂/CC界面相互作用对PP/CC的结晶形态、结晶行为、熔融特性和力学性能的影响.观察到PP/CC界面相互作用提高PP结晶温度和PP/CC的模量和冲击强度,但降低了屈服强度.相容剂/CC界面相互作用进一步提高了PP/CC的结晶温度.PP/相容剂界面相互作用取决于PP与相容剂相容性.PP/PP-g-MAH相容性高有利于提高PP/CC的异相成核作用和PP/CC屈服强度和模量,但降低冲击强度.PP/POE-g-MAH部分相容对相容剂/CC界面的异相成核作用、PP/CC屈服强度和模量影响不大,可明显提高冲击强度.但PP/EVA-g-MAH不相容导致PP/CC冲击强度明显降低.  相似文献   

2.
This work addresses the optimization of the morphology, thermal, and mechanical properties of polypropylene/layered double hydroxide (LDH) nanocomposites. For this, the nanofillers were modified by a calcination rehydration process using two surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate, respectively. The nanofillers were characterized at each step of the modification process by thermal gravimetry, X‐ray diffraction, and Infra red spectroscopy. Furthermore, the impact of anionic modifiers on the filler surface energy and on the interactions toward water was analyzed. Polypropylene (PP)/LDH nanocomposites were then prepared by a melt intercalation process and a high molar mass maleic anhydride functionalized polypropylene (PPgMA) was introduced as a compatibilizer. The dispersion of LDH in the PP matrix was characterized and the thermal and mechanical properties of the corresponding nanocomposites were determined and discussed as a function of the filler modification, of the nanocomposite morphology, and of the filler/matrix interfacial properties. The nanocomposites prepared from SDS modified LDH and PPgMA exhibited superior properties thanks to an optimized filler dispersion state and improved interfacial interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 782–794  相似文献   

3.
The compatibilizing effect of polypropylene (PP) grafted with hyperbranched polymers (PP–HBP) has been investigated in PP/polyamide‐6 (PA‐6) blends. Because of its high reactivity and diffusitivity, PP–HBP has been shown to be a more effective compatibilizer in decreasing the interfacial tension than the commonly used maleic anhydride–grafted polypropylene (PP–MAH). This article describes the influence of PP–HBP and PP–MAH on the interfacial tension between PP and PA‐6, as measured by the deformed drop‐retraction method (DDRM). Overall, PP–HBP yielded lower interfacial tension values between PP and PA‐6, which resulted in a finer particle size of the secondary phase. The time dependence of the interfacial tension can be monitored by DDRM, enabling evaluation of the diffusitivity and reactivity of the compatibilizer. A model based on particle coarsening has been developed to describe the time dependence of the interfacial tension. This model showed that the diffusitivity and reactivity for PP–HBP was higher than that of PP–MAH. Therefore, PP–HBP has strong potential as a compatibilizer in diffusitivity‐dependant processes such as film coextrusion and fusion bonding. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2069–2077, 1999  相似文献   

4.
聚丙烯/石墨导电纳米复合材料的制备与性能   总被引:14,自引:0,他引:14  
用溶液插层及其与熔体混合相结合的母料熔体混合 (MMM)方法制备了聚丙烯 (PP) 马来酸酐接枝聚丙烯 (gPP) 膨胀石墨 (EG) (gPP EG =3 2wt)导电纳米复合材料 ,其室温逾渗阀值 (c)分别为 6wt%和 8wt % ,明显低于直接熔体混合制得复合材料和PP EG对照材料的c=11wt%和 12wt% .增加gPP含量 (Cg)能提高复合材料的电导率 (σ) ,例如对于MMM法制备的复合材料 ,固定PP gPP =1 1wt时 ,c 降为 7wt% ;保持EG含量 =9wt%时 ,σ在Cg>30wt %后跃升 7个数量级以上 .通过TEM、SEM和OM观察 ,从制备方法、EG和gPP含量影响复合材料形态和微结构的角度 ,分析说明了出现上述差异和现象的原因 .  相似文献   

5.
马来酸酐接枝聚丙烯/石墨导电纳米复合材料的研究   总被引:11,自引:2,他引:11  
用溶液插层 (SI)法制备了马来酸酐接枝聚丙烯 (gPP) 膨胀石墨 (EG)导电纳米复合材料 ,以熔体混合(MM)法作对照 ,通过室温体积电导率 (σ)测试和OM、SEM、TEM观察 ,研究了复合材料的制备方法、微观结构和导电性能关系 .结果表明 ,SI法制得纳米复合材料的室温逾渗阈值c=0 6 7vol% ,远低于MM法制得复合材料的c=2 96vol% ;3 90vol%EG含量下 ,前者的σ达 2 4 9× 10 - 3S cm ,而后者的σ仅 6 85× 10 - 9S cm .产生上述差异的原因 ,与两种方法制得复合材料中EG分散相的形态及其内部微结构直接相关 .  相似文献   

6.
β-Nucleated polypropylene (PP), non-compatibilized and compatibilized β-nucleated PP/recycled poly(ethylene terephthalate) (r-PET) blends were prepared on a twin-screw extruder. The compatibilizers were maleic anhydride grafted PP (PP-g-MA), glycidyl methacrylate grafted PP (PP-g-GMA), maleic anhydride grafted polyethylene-octene (POE-g-MA) and polyethylene-vinyl acetate (EVA-g-MA) elastomers. Effects of r-PET content, compatibilizer type and content, pre-melting temperature and time on the non-isothermal crystallization and melting behavior, and polymorphism of PP in the blends were investigated by differential scanning calorimeter (DSC). DSC results show that the crystallization temperature of PP crystallized predominantly in β-modification was higher than that of neat PP. In the non-compatibilized blend, PP matrix crystallized mainly in α-modification even if r-PET content was only 10 wt%. However, PP-g-MA compatibilization made PP matrix crystallize mainly in β-modification, but PP-g-GMA, POE-g-MA and EVA-g-MA did not improve the β-modification content distinctly. The α-crystal melting peak temperature of PP decreased with increasing pre-melting temperature, but r-PET content, compatibilizer type and content as well as pre-melting time had no obvious effect on the melting temperature of PP. The increase in PP-g-MA content, pre-melting temperature and time was benefit for the formation of β-modification. It is suggested that the β-nucleating agent is encapsulated or dissolved in polar r-PET in β-nucleated PP/r-PET blend, addition of PP-g-MA to the non-compatibilized blend resulted in transferring β-nucleating agent from r-PET phase into PP phase, the increase in PP-g-MA content, melting temperature and time was benefit for transferring β-nucleating agent from r-PET phase into PP phase. The non-isothermal crystallization kinetics of PP in the blends were evaluated by Mo’s method.  相似文献   

7.
Polypropylene (PP)-montmorillonite nanocomposites have been prepared using isotactic PP homopolymers with different rheological properties, and a maleic anhydride grafted PP. Morphology and structure of the composites were investigated by using X-ray techniques (WAXD, SAXS) and transmission electron microscopy (TEM). The absence of pristine clusters of the clay and the presence of intercalated and exfoliated structures were shown for all the investigated samples. The nanocomposite prepared by using maleic anhydride grafted PP showed a widespread exfoliation. The thermal behaviour and degradation have been studied by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The incorporation of the montmorillonite improves the thermal stability in air atmosphere of all the investigated PPs, thanks to a physical barrier effect of the silicate layers.  相似文献   

8.
The very poor adhesion between films of styrene and acrylonitrile random copolymer (SAN) and maleic anhydride grafted polypropylene (PP‐g‐MA) can be dramatically improved by an intermediate thin layer of SAN bearing groups reactive toward maleic anhydride. The rate of the interfacial reaction, which is controlled by the reactive groups attached to SAN (amine vs. carbamate) and by the method used to build up the sandwich assembly, has a decisive effect on the capability of the SAN‐g‐PP graft copolymer formed at the interface to improve the fracture toughness in direct dependence on its molecular architecture.  相似文献   

9.
Well dispersed polypropylene (PP)/sepiolite clay nanocomposites were prepared successfully using supercritical carbon dioxide (scCO2) assisted mixing with and without the presence of maleic anhydride grafted polypropylene (PP-g-MA) as compatibilizer. The resulting morphology and polymorphism of nanocomposites were established using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations. The mechanical properties of the nanocomposites were investigated and compared with those obtained by a traditional melt compounding method. Our results showed that by using scCO2 in the process, we were able to obtain better sepiolite dispersions and reduce breakage of sepiolite fibres. Consequently, a significant improvement in the yield stress was observed for the nanocomposites processed in scCO2 compared to those processed by the traditional melt compounding. XRD data also indicated that the resulting nanocomposites had only α-phase crystallites of PP while the presence of sepiolite could also induce preferred orientation of these α-phase crystallites.  相似文献   

10.
The influence of the incorporation of polyamide-6 (PA) and natural sepiolite nanoparticles on both the thermal degradation and fire behaviour of polypropylene (PP) matrix has been investigated by thermogravimetric analysis (TGA) and mass loss calorimetry. For that purpose, PP/PA blends and nanocomposites thereof were prepared by melt processing. TGA results evidenced that the use of maleic anhydride grafted-polypropylene (MA-g-PP) as compatibilizer led to a significant improvement in thermal stability under air. Such improvement was linked to the formation of a char layer preventing the thermo-oxidative degradation of PP. Interestingly, the thermal resistance of this char layer was further improved by adding 5 wt% of natural sepiolite leading to important increase of time to ignition and reduction of peak of heat release rate (pHRR) during mass loss calorimeter test.  相似文献   

11.
Composite of highly crystalline fibrous cellulose (CE) and polypropylene (PP) of different molecular weights () was prepared via melting-mixing, maleic anhydride grafted polypropylene (MAPP) was used as a compatibilizer. And the effects of molecular weight of PP on the properties of the composites were investigated. Through the studying of mechanical properties, dynamic mechanical properties, melting and crystallization behaviors, thermo-oxidative properties, water absorption behaviors, and the morphology of the composites, it was found that PP with higher molecular weight revealed stronger interfacial interaction with cellulose in the composites. Compared with the lower molecular weight, the composites derived from higher molecular weight of PP exhibited stronger tensile strength at the same cellulose content.  相似文献   

12.
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005  相似文献   

13.
In this work, the rheological, mechanical and morphological properties of flax fiber polypropylene composites were investigated. The effect of incorporating a polypropylene grafted acrylic acid or a polypropylene grafted maleic anhydride on these properties has been studied as well. According to scanning electron microscopic observations and tensile tests, the addition of a compatibilizer improved the interfacial adhesion between the flax fibers and the polymer matrix. The tensile modulus of composite containing 30 wt% flax fibers was improved by 200 % and the tensile strength improved by 60 % in comparison with the neat PP. Plasticizing effect of the compatibilizers as a result of their lower melt flow index was also shown to decrease the rheological properties of the composites, even though the effect was not pronounced on the mechanical properties.  相似文献   

14.
Compounds were prepared with isotactic polypropylene (iPP) matrix and recycled polyamide 66 fibres (PA66), which were obtained as soft waste in industrial production process. Blends with pristine PA66 pellets were prepared as comparison. The blends showed the presence of PA66 particles dispersed in the PP continuous phase. Considering the incompatibility of the two polymers the addition of isotactic polypropylene grafted with maleic anhydride (iPPgMA) as compatibilizer was investigated: the blends were characterized by thermal, mechanical, dynamic-mechanical and morphological analyses. The presence of the compatibilizer significantly influences the morphology of the blends, inducing a finer dispersion and promoting interfacial adhesion. The characterization of pristine and recycled PA66 did not show a meaningful difference in the value of molecular weight, on the other hand marked differences were presented in the flexural moduli of the two materials; analogous differences were exhibited by the blends: compounds prepared with recycled PA66 showed flexural moduli higher than compatibilized blends with pristine PA66.  相似文献   

15.
The effect of two compatibilizers, polypropylene graft maleic anhydride (PPgMA) and ethylene vinyl alcohol (EvOH), on the physical properties of wood polymer composites were studied. The composites were prepared with pine wood and two different impact polypropylene polymers, where the polymers varied according to ethylene content. These compatibilizers, when used together and pre-reacted to create a joint compatiblizer of PPgMA and EvOH, significantly improved control over the repeatability of the physical properties tested, compared to when the compatibilizers were used individually. The impact values were slightly reduced, however the standard deviation of these values showed that the variation in the impact properties were significantly minimized when EvOH was also introduced. It appears that the joint compatiblizer provides better control over the hardness to impact balance of these composite materials and some of these physical properties were improved depending on the ratio between PPgMA and EvOH used, in the joint compatibilizer. Due to the difference in chemistry between PPgMA and EvOH, we expected PPgMA to interact more with the crystalline polypropylene matrix of the impact polymer and the EvOH with the amorphous, rubbery part and yield interesting results.  相似文献   

16.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

17.
Due to the economic importance of polypropylene (PP) and polyethylene terephthalate (PET), and the large amount of composites made with PP matrix and recycled PET as reinforcing material; an investigation was performed regarding the mechanical and thermal behavior of PP composites containing recycled polyethylene terephthalate fibers (rPET). Interfacial adhesion between the two materials was achieved by adding a compatibilizer, maleic anhydride grafted polypropylene, PP-g-MA. Mechanical behavior was assessed by tensile, flexural, impact and fatigue tests, and thermal behavior by HDT (Heat Deflection Temperature). Fractured surfaces and fiber were investigated by scanning electron microscopy. Multiple regression statistical analysis was performed to interpret interaction effects of the variables. Tensile strength, tensile modulus, flexural strength, flexural modulus and HDT increased after rPET fiber incorporation while strain at break, impact strength and fatigue life decreased. Addition of compatibilizer increased tensile strength, flexural strength and flexural modulus, fatigue life and HDT while tensile modulus, strain at break and impact strength decreased. However, at low fiber content, the impact strength increased, probably due to nucleation effects on PP.  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - In this paper, isothermal and non-isothermal crystallization behaviour of neat polypropylene (PP), blends of PP/maleic anhydride grafted polypropylene...  相似文献   

19.
We explore the approaches to improving the fabrication of melt‐blown helical microfibers, which have found the applications in sorption and filtration due to their unique morphology and excellent properties. To explore the effect of compatibilizer on the formation of helical microfiber, polypropylene (PP), polyurethane (TPU), and PP grafted with maleic anhydride (PP‐g‐MAH) are melt blown to fabricate microfibrous nonwovens. The results of rheological test and differential scanning calorimetry show that the addition of PP‐g‐MAH helps to increase the miscibility of the PP/TPU blends. Two die configurations are used to study the effect of airflow filed on the formation of helical microfibers. The computational fluid dynamics simulation results show that the modified swirl die intensifies the swirling strength of the melt blowing airflow. The addition of compatibilizer and modification of the airflow field both benefit the formation of helical microfibers from polymer blends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1423–1433  相似文献   

20.
Polypropylene/organoclay (PP/OMMT) nanocomposites were prepared in a twin-screw corotating extruder using two methods. The first method was the dilution of commercial (PP/50% Nanofil SE3000) masterbatch in PP (or PP with commercial flame retardant). The second method consists of two stages was the extrusion of maleic anhydride grafted polypropylene (PP-g-MAH) with commercially available organobentonite masterbatch in first stage and dilution of the masterbatch in PP (or PP with commercial flame retardant) in second stage. XRD results showed no intercalation in composites obtained from commercial masterbatch without compatibilizer and semi - delamination for compatibilized systems. Tensile tests revealed that nanocomposites with 5% of organoclay have a slightly higher tensile modulus and tensile strength than pristine PP, however addition of the commercial flame retardant (FR) reduces mechanical parameters to roughly the level of those for neat PP. PP/OMMT composites have approx. 25% higher oxygen index than pristine PP, and this changes slightly after the addition of FR. The cone calorimeter tests showed a decrease of a heat release rate (HRR) and a mass loss rate (MLR) after the addition of FR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号