首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We prove that if G is a 5‐connected graph embedded on a surface Σ (other than the sphere) with face‐width at least 5, then G contains a subdivision of K5. This is a special case of a conjecture of P. Seymour, that every 5‐connected nonplanar graph contains a subdivision of K5. Moreover, we prove that if G is 6‐connected and embedded with face‐width at least 5, then for every vV(G), G contains a subdivision of K5 whose branch vertices are v and four neighbors of v.  相似文献   

2.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

3.
We show that if G is a 4‐connected claw‐free graph in which every induced hourglass subgraph S contains two non‐adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4‐connected claw‐free, hourglass‐free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 267–276, 2005  相似文献   

4.
In this article, we apply a cutting theorem of Thomassen to show that there is a function f: N → N such that if G is a 3‐connected graph on n vertices which can be embedded in the orientable surface of genus g with face‐width at least f(g), then G contains a cycle of length at least cn, where c is a constant not dependent on g. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 69–84, 2002  相似文献   

5.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

6.
A graph G is N2locally connected if for every vertex ν in G, the edges not incident with ν but having at least one end adjacent to ν in G induce a connected graph. In 1990, Ryjá?ek conjectured that every 3‐connected N2‐locally connected claw‐free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005  相似文献   

7.
The prism over a graph G is the Cartesian product GK2 of G with the complete graph K2. If the prism over G is hamiltonian, we say that G is prism‐hamiltonian. We prove that triangulations of the plane, projective plane, torus, and Klein bottle are prism‐hamiltonian. We additionally show that every 4‐connected triangulation of a surface with sufficiently large representativity is prism‐hamiltonian, and that every 3‐connected planar bipartite graph is prism‐hamiltonian. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 181–197, 2008  相似文献   

8.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

9.
《Journal of Graph Theory》2018,87(2):230-238
Thomassen proved that every planar graph G on n vertices has at least distinct L‐colorings if L is a 5‐list‐assignment for G and at least distinct L‐colorings if L is a 3‐list‐assignment for G and G has girth at least five. Postle and Thomas proved that if G is a graph on n vertices embedded on a surface Σ of genus g, then there exist constants such that if G has an L‐coloring, then G has at least distinct L‐colorings if L is a 5‐list‐assignment for G or if L is a 3‐list‐assignment for G and G has girth at least five. More generally, they proved that there exist constants such that if G is a graph on n vertices embedded in a surface Σ of fixed genus g, H is a proper subgraph of G, and ϕ is an L‐coloring of H that extends to an L‐coloring of G, then ϕ extends to at least distinct L‐colorings of G if L is a 5‐list‐assignment or if L is a 3‐list‐assignment and G has girth at least five. We prove the same result if G is triangle‐free and L is a 4‐list‐assignment of G, where , and .  相似文献   

10.
In this article, we show that there exists an integer k(Σ) ≥ 5 such that, if G is a graph embedded in a surface Σ without i‐circuits, 4 ≤ ik(Σ), then G is 3‐colorable. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 140–143, 2000  相似文献   

11.
For an integer s ≥ 0, a graph G is s‐hamiltonian if for any vertex subset with |S| ≤ s, G ‐ S is hamiltonian. It is well known that if a graph G is s‐hamiltonian, then G must be (s+2)‐connected. The converse is not true, as there exist arbitrarily highly connected nonhamiltonian graphs. But for line graphs, we prove that when s ≥ 5, a line graph is s‐hamiltonian if and only if it is (s+2)‐connected.  相似文献   

12.
Suppose G is a graph embedded in Sg with width (also known as edge width) at least 264(2g−1). If PV(G) is such that the distance between any two vertices in P is at least 16, then any 5‐coloring of P extends to a 5‐coloring of all of G. We present similar extension theorems for 6‐ and 7‐chromatic toroidal graphs, for 3‐colorable large‐width graphs embedded on Sg with every face even‐sided, and for 4‐colorable large‐width Eulerian triangulations. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 105–116, 2001  相似文献   

13.
For each surface Σ, we define Δ(Σ) = max{Δ(G)|Gis a class two graph of maximum degree Δ(G) that can be embedded in Σ}. Hence, Vizing's Planar Graph Conjecture can be restated as Δ(Σ) = 5 if Σ is a plane. In this paper, we show that Δ(Σ) = 9 if Σ is a surface of characteristic χ(Σ) = ?5. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:148‐168, 2011  相似文献   

14.
It is proven that if G is a 3‐connected claw‐free graph which is also H1‐free (where H1 consists of two disjoint triangles connected by an edge), then G is hamiltonian‐connected. Also, examples will be described that determine a finite family of graphs such that if a 3‐connected graph being claw‐free and L‐free implies G is hamiltonian‐connected, then L . © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002  相似文献   

15.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

16.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

17.
Let cl(G) denote Ryjá?ek's closure of a claw‐free graph G. In this article, we prove the following result. Let G be a 4‐connected claw‐free graph. Assume that G[NG(T)] is cyclically 3‐connected if T is a maximal K3 in G which is also maximal in cl(G). Then G is hamiltonian. This result is a common generalization of Kaiser et al.'s theorem [J Graph Theory 48(4) (2005), 267–276] and Pfender's theorem [J Graph Theory 49(4) (2005), 262–272]. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
We show that every 3‐connected claw‐free graph which contains no induced copy of P11 is hamiltonian. Since there exist non‐hamiltonian 3‐connected claw‐free graphs without induced copies of P12 this result is, in a way, best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 111–121, 2004  相似文献   

19.
For a connected noncomplete graph G, let μ(G):=min{max {dG(u), dG(v)}:dG(u, v)=2}. A well‐known theorem of Fan says that every 2‐connected noncomplete graph has a cycle of length at least min{|V(G)|, 2μ(G)}. In this paper, we prove the following Fan‐type theorem: if G is a 3‐connected noncomplete graph, then each pair of distinct vertices of G is joined by a path of length at least min{|V(G)|?1, 2μ(G)?2}. As consequences, we have: (i) if G is a 3‐connected noncomplete graph with , then G is Hamilton‐connected; (ii) if G is a (s+2)‐connected noncomplete graph, where s≥1 is an integer, then through each path of length s of G there passes a cycle of length≥min{|V(G)|, 2μ(G)?s}. Several results known before are generalized and a conjecture of Enomoto, Hirohata, and Ota is proved. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 265–282, 2002 DOI 10.1002/jgt.10028  相似文献   

20.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号