首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles having 9.4 μm in diameter were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles, and their morphologies were examined. The highly BMA-swollen PS particles (about 150 times the weight of the PS seed particles) were prepared by mixing monodispersed 1.8 μm-sized PS seed particles and 0.7 μm sized BMA droplets prepared with an ultrasonic homogenizer in ethanol/water (1/2, w/w) medium at room temperature. After NaNO2 aqueous solution as inhibitor was added in the dispersion, the seeded polymerization was carried out at 70 °C. In an optical microscopic observation, one or two spherical high contrast regions which consisted mainly of PS were observed inside PS/PBMA composite particles. In the PS domain, there were many fine spherical PBMA domains. Such morphologies were based on the phase separation of PS and PBMA within the homogeneous swollen particles during the seeded polymerization. Received: 04 June 1997 Accepted: 27 August 1997  相似文献   

2.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

3.
Utilizing a new type of monomer swelling method, 6.1 m-size monodisperse polymer particles were prepared by seeded polymerization. 1.8 m-size monodisperse polystyrene (PS) seed particles (1.8 m in size) were prepared by dispersion polymerization in ethanol-water (80/20, v/v) medium in the presence of poly(acrylic acid) as stabilizer with 2,2-azobisisobutyronitrile as initiator. The PS seed dispersion was mixed with ethanol-water (60/40, v/v) solution dissolving styrene (S) monomer, benzoyl peroxide as initiator, and poly(vinyl alcohol) as stabilizer. By slow, continuous, dropwise addition of water with a micro feeder into the mixture, the PS particles absorbed the many S monomers, which were separated from the medium and swelled from 1.8 m to 8.4 m while keeping the monodispersity high. We named this procedure the dynamic swelling method. Then, the seeded polymerization of the absorbed S monomer was carried out in the presence of NaNO2 as water-solube inhibitor.Part CXXII of the series Studies on Suspension and Emulsion.  相似文献   

4.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

5.
 In order to develop the seeded polymerization technique utilizing the dynamic swelling method (DSM) proposed by authors for the production of micron-sized mono-dispersed “composite” polymer particles consisting of two kinds of polymers, the seeded polymerization for the dispersion of ethyl methacry-late (EMA)-swollen PS particles prepared utilizing DSM was carried out. Monodispersed PS/poly(ethyl methacrylate) (PEMA) composite particles having 7 μm in diameter were produced by the addition of NaCl to lower the solubility of EMA in medium and by the addition of CuCl2 as a water-soluble inhibitor to depress the by-production of submicron-sized PEMA particles. Received: 16 July 1996 Accepted: 10 October 1996  相似文献   

6.
Production of hollow polymer particles by suspension polymerization   总被引:4,自引:0,他引:4  
 Polymer particles having single hollow in the inside were successfully prepared by suspension polymerization for divinylbenzene/ toluene droplets dissolving polystyrene (PS) in an aqueous solution of poly(vinyl alcohol). Such a hollow polymer particle was not obtained without PS. The hollow structure was affected by the molecular weight and the concentration of PS. Received: 3 December 1997 Accepted: 27 March 1998  相似文献   

7.
For the purpose of extending the size range of polymer seed particles used in “dynamic swelling method” (DSM), first it was verified theoretically that the submicron-sized polymer particles produced by emulsion polymerization can also absorb a large amount of monomer by DSM in both equilibrium and kinetic control states. Next, on the basis of the theoretical results, experimentally about 2.6 μm-sized styrene-swollen polystyrene (PS) particles were prepared utilizing DSM in the presence of 0.64 μm-sized monodispersed PS seed particles produced by emulsifier-free emulsion polymerization. Moreover, 2.5 μm-sized monodispersed PS particles were produced by the addition of cupric chloride as a water-soluble inhibitor to depress the by-production of submicron-sized PS particles in the seeded polymerization at 30°C with 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2513–2519, 1998  相似文献   

8.
Three kinds of micron-sized monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/BMA=2/1, wt. ratio) were produced by two kinds of seeded polymerizations ofn-butyl methacrylate (BMA) in the presence of about 2 m-sized monodispersed PS particles, and their morphologies were examined. One was produced by a seeded dispersion polymerization where almost monomers and initiators exist in an ethanol/water (1/1, w/w) medium. The others two were produced by seeded polymerizations utilizing the dynamic swelling method, where almost monomers exist in the PS seed particles, with 2,2-azobisisobutyronitrile initiator in the monomer-swollen particles and with 2,2-azobis [2-(2-imidazolin-2-yl)propane] initiator in an ethanol/water (1/5, w/w) medium. In the former polymerization, the produced composite particles had a core-shell structure consisting of a PS-core and a PBMA-shell, whereas in the latter two polymerizations, they had a POO (Polymeric Oil-in-Oil) structure consisting of a PS-matrix and many PBMA-domains, regardless of the location of initiator in the systems. From these results, it is concluded that the location of BMA monomer in the seeded polymerization systems with micron-sized monodispersed PS seed particles greatly affects the morphologies of produced PS/PBMA composite particles.Part CLI of the series Studies on Suspension and Emulsion  相似文献   

9.
 Micron-sized monodispersed polystyrene (PS)/poly(n-butyl methacrylate) composite particles were produced as follows. First, 1.77 μm-sized monodispersed PS seed particles produced by dispersion polymerization were dispersed in ethanol/water (1/2, w/w) medium dissolving poly(vinyl alcohol) as a stabilizer. n-Butyl methacrylate (BMA) monomer dissolving benzoyl peroxide initiator was emulsified in ethanol/water (1/2, w/w) solution of sodium dodecyl sulfate as emulsifier with ultrasonic homogenizer, and the BMA monomer emulsion was mixed with the PS seed emulsion. The PS seed particles absorbed with a large amount of BMA (about 150 times weight of the seed particles) for 2 h to about 10 μm in diameter while keeping good monodispersity and BMA droplets disappeared finally. The seeded polymerization was carried out at 70 °C after a certain amount of water was added to depress the redissolving of BMA from the swollen particles into the medium by raising from room temperature to the polymerzation temperature. Received: 21 February 1996 Accepted: 4 September 1996  相似文献   

10.
Monodisperse polymer particle-based separation media were prepared by a multi-step swelling and polymerization method with two pairs of monomers and two porogenic solvents. Their chromatographic properties were compared to those of beads prepared by a corresponding suspension polymerization method without the use of seed polymer to ascertain the influence of the seed polymer on their porous structures. A large change in porous structure was observed when the swollen particle consisting of monomers and porogenic solvents contained at least one good solvent for the polystyrene seed polymer, allowing it to remain in the polymerizing medium. In contrast, when the polystyrene seed particle was excluded from the swollen oil droplets, due to its poor solubility in the monomers and the porogenic solvents, there was no difference in the chromatographic properties such as pore volume, pore size, pore size distribution, or retention selectivity between the multi-step swelling and polymerization method and the suspension polymerization method. Since the only difference between the multi-step swelling and polymerization method and the suspension method is the use of the seed polymer, it appears that a very small amount (< 1% v/v) of seed polymers in the enlarged swollen droplets plays an important role as a porogen and affects the porous structure as well as the chromatographic properties of the monodisperse polymer particle-based separation media. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
This article describes the investigation of the importance of various reaction conditions on microsyneretic pore formation during polymerization of divinylbenzene (DVB) under so‐called “solvothermal” conditions. To induce microsyneretic pore formation, the most important parameter is an unusually high dilution of monomers with a “good” porogen solvating the polymer chains. High dilution and solvation of the growing poly(DVB) chains promote the prolongation of the polymer chains rather than their interconnection by crosslinking. Consequently, when the polymer gel density reaches the point where syneresis starts, the polymer network is geometrically too extensive to be broken up into precipitating entities and, instead, porogen droplets are formed within the continuous polymer gel. The pore geometry created by microsyneresis offers high surface area in wide mesopores and hence, high capacity for supporting functional groups or reactions with much better accessibility than narrow pores between polymer microspheres produced by macrosyneresis in conventional styrenic polymer supports. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 774–781  相似文献   

12.
 The effect of the weight ratio of seed polymer/monomer on the morphology of the poly(methyl methacrylate) (PMMA)/polystyrene (PS) monodispersed composite particles produced by batch seeded dispersion polymerization of styrene with 1.64-μm-sized monodispersed PMMA seed particles in a methanol/water medium (4/1 w/w) was examined. In the PMMA/PS weight ratios of 3/1 and 2/1, the composite particles had a clear morphology consisting of a PMMA core and a PS shell. In the ratio of 1/1, a lot of small PS domains were observed in the PMMA core though the PS shell was still formed. By stepwise addition of styrene monomer, the formation of the small PS domain was depressed and complete core/shell morphology was formed. Absorption/release treatments of toluene into/from the PMMA/PS (1/1 w/w) composite particles resulted in a drastic morphological change from the core/shell structure to a multi- layered one. Received: 2 February 1999 Accepted in revised form: 7 April  相似文献   

13.
We describe the synthesis and characterization of latex particles labeled with a brightly fluorescent yellow dye (HY) based on the benzothioxanthene ring structure. Three dye derivatives were synthesized with different spacers connecting the HY nucleus to a methacrylate group. For one of the dyes (HY2CMA, rA), we show that the reactivity ratios with styrene (rA = 0.71, rB = 0.25) and butyl methacrylate (rA = 0.87, rB = 0.14) should lead to random dye incorporation if the amount of dye in the feed is small. Seeded emulsion polymerization fails to lead to significant dye incorporation unless large amounts of nonionic surfactant are present. In contrast, miniemulsion polymerization worked well to yield latex particles of polystyrene, poly(butyl methacrylate), and poly(methyl methacrylate) with high monomer conversion and essentially quantitative dye incorporation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 766–778, 2003  相似文献   

14.
Submicron-sized styrene-methacrylic acid copolymer particles, which were produced by emulsion copolymerization, were changed to those having multihollow structure by treating stepwise the emulsion as follows. First alkali treatment was carried out at higher temperature than the glass transition temperature and subsequently the emulsion was cooled by keeping it at room temperature. This was named alkali/cooling method. The effects of methacrylic acid content, pH, time and temperature in the alkali treatment on the formation of multihollow structure were clarified.Part CLV of the series Studies on suspension and emulsion  相似文献   

15.
Single-stage polymerization recently proposed for producing micron-sized polymer particles in aqueous media by Gu, Inukai and Konno (2002) was carried out under the control of agitation with styrene monomer, an amphoteric initiator, 2,2′-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate and a pH buffer NH3/NH4Cl at a monomer concentration of 1.1 kmol/m3 H2O, an initiator concentration of 10 mol/m3 H2O and a buffer concentration of [NH3] = [NH4Cl] = 10 mol/m3 H2O. In the polymerizations, impeller speed was ranged from 300 to 500 rpm to satisfy complete dispersion of the monomer phase and not to introduce the gas phase from the free surface. Polymerization experiments under steady agitation indicated that impeller speed was an important factor for size distribution of polymer particles. An increase in impeller speed promoted particle coagulation during the polymerization to enlarge the average size of polymer particles but widen the size distribution. To produce polymer particles with narrow size distribution, stepwise reduction in impeller speed was examined in the polymerization experiments. It was demonstrated that this method was more effective than the steady agitation. The impeller speed reduction could produce highly monodisperse particles with an average size of 2 μm and a coefficient of variation of size distributions of 2.2% that was much smaller than typical monodispersity criterion of 10%.  相似文献   

16.
 Recently, we reported that multi-hollow polymer particles can be prepared from carboxylated polymer particles by the stepwise alkali/acid method. In this article, an attempt was made to prepare similar particles from acid-swellable polymer particles by the stepwise treatment with acid and alkali, which was named the stepwise acid/alkali method. The acid-swellable particles were produced by emulsion terpolymerization of styrene, butyl acrylate, and dimethyl 2-amino ethyl methacrylate. The effects of initial pH value, temperature, and time in the acid and alkali treatment processes on the multi-hollow structure were examined. Received: 18 December 1996 Accepted: 11 March 1997  相似文献   

17.
 Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced. Received: 30 September 1999/Accepted: 18 April 2000  相似文献   

18.
Polymer particles having glycidyl ether groups were prepared through seeded polymerization in aqueous medium. The polystyrene seed particles were swollen with a mixture of n-butyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, and benzoyl peroxide initiator. The particles produced after polymerization were characterized regarding the particle morphology and functionality. Optical microscopy and scanning electron microscopy showed that the particles are in the size range of 13–14 μm and are highly monodisperse with heterophase structures. Actually, the high content of glycidyl methacrylate in the second monomer mixture caused the particle phase to be homogeneous. This effect was explained in terms of the surface tension of each polymer phase. Moreover, the cross-linking of the seed particles had a significant effect on the final particle morphology. From the HCl–dioxane back titration method, it was found that about 20–30% of glycidyl ether groups still remained on the final particles. Received: 25 February 2000 Accepted: 10 November 2000  相似文献   

19.
Anomalous polymer particles with a partial protuberance like octopus ocellatus were produced under alkaline conditions by seeded emulsion copolymerization for styrene and butyl acrylate, with styrene-butyl acrylate-methacrylic acid terpolymer emulsion as seed. The mechanism of production of the polymer particles was studied. By transmission electron microscopic observation of the particles at each conversion, it was observed that the anomalous polymer particles were produced by partial growth of each of the individual seed particles throughout polymerization. Ionization of the carboxyl groups and low viscosity in the growing particles during the process of polymerization were important factors for partial growth.Part CIII of the series Studies on Suspension and Emulsion.  相似文献   

20.
In this study, shape-anisotropic polymeric particles were synthesized by seeded growth technique for the applications of particle self-assembly. First, cross-linked seed particle dispersion was prepared by emulsifier-free emulsion polymerization with divinylbenzene as cross-linker. Then, seeded growth scheme was applied to the seeds by swelling the particles with monomer and subsequent polymerization. The morphologies of the nonspherical particles could be controlled by adjusting the size and the amount of monomer during the swelling step or the cross-linking density of the seed particles, enabling the synthesis of prolate ellipsoids, lobed spheres with triangular shape, snowman-shaped particles, and dumbbell particles. As a demonstrative application, the cross-linked particles could be used as templates for the synthesis of porous materials, whereas dumbbell-shaped particles could be self-organized into colloidal clusters using toluene emulsions as confining geometries. Collectively, shape-anisotropic particles were found to be efficient building blocks to prepare the unique packing structures other than simple spherical colloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号