共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a noisy graph isomorphism problem, where the goal is to perfectly recover the vertex correspondence between two edge‐correlated graphs, with an initial seed set of correctly matched vertex pairs revealed as side information. We show that it is possible to achieve the information‐theoretic limit of graph sparsity in time polynomial in the number of vertices n. Moreover, we show the number of seeds needed for perfect recovery in polynomial‐time can be as low as in the sparse graph regime (with the average degree smaller than ) and in the dense graph regime, for a small positive constant . Unlike previous work on graph matching, which used small neighborhoods or small subgraphs with a logarithmic number of vertices in order to match vertices, our algorithms match vertices if their large neighborhoods have a significant overlap in the number of seeds. 相似文献
2.
Gregory J. Puleo 《Journal of Graph Theory》2015,80(1):12-17
Erd?s, Gallai, and Tuza posed the following problem: given an n‐vertex graph G, let denote the smallest size of a set of edges whose deletion makes G triangle‐free, and let denote the largest size of a set of edges containing at most one edge from each triangle of G. Is it always the case that ? We have two main results. We first obtain the upper bound , as a partial result toward the Erd?s–Gallai–Tuza conjecture. We also show that always , where m is the number of edges in G; this bound is sharp in several notable cases. 相似文献
3.
Lutz Warnke 《Random Structures and Algorithms》2014,44(4):490-526
The ‐free process starts with the empty graph on n vertices and adds edges chosen uniformly at random, one at a time, subject to the condition that no copy of is created. For every we show that, with high probability as , the maximum degree is , which confirms a conjecture of Bohman and Keevash and improves on bounds of Osthus and Taraz. Combined with previous results this implies that the ‐free process typically terminates with edges, which answers a question of Erd?s, Suen and Winkler. This is the first result that determines the final number of edges of the more general H‐free process for a non‐trivial class of graphs H. We also verify a conjecture of Osthus and Taraz concerning the average degree, and obtain a new lower bound on the independence number. Our proof combines the differential equation method with a tool that might be of independent interest: we establish a rigorous way to ‘transfer’ certain decreasing properties from the binomial random graph to the H‐free process. © 2014 Wiley Periodicals, Inc. Random Struct. Alg. 44, 490–526, 2014 相似文献
4.
Hajo Broersma Ralph J. Faudree Andreas Huck Huib Trommel Henk Jan Veldman 《Journal of Graph Theory》2002,40(2):104-119
It is proven that if G is a 3‐connected claw‐free graph which is also H1‐free (where H1 consists of two disjoint triangles connected by an edge), then G is hamiltonian‐connected. Also, examples will be described that determine a finite family of graphs such that if a 3‐connected graph being claw‐free and L‐free implies G is hamiltonian‐connected, then L . © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002 相似文献
5.
Polarity and monopolarity are properties of graphs defined in terms of the existence of certain vertex partitions; graphs with polarity and monopolarity are respectively called polar and monopolar graphs. These two properties commonly generalize bipartite and split graphs, but are hard to recognize in general. In this article we identify two classes of graphs, triangle‐free graphs and claw‐free graphs, restricting to which provide novel impact on the complexity of the recognition problems. More precisely, we prove that recognizing polarity or monopolarity remains NP‐complete for triangle‐free graphs. We also show that for claw‐free graphs the former is NP‐complete and the latter is polynomial time solvable. This is in sharp contrast to a recent result that both polarity and monopolarity can be recognized in linear time for line graphs. Our proofs for the NP‐completeness are simple reductions. The polynomial time algorithm for recognizing the monopolarity of claw‐free graphs uses a subroutine similar to the well‐known breadth‐first search algorithm and is based on a new structural characterization of monopolar claw‐free graphs, a generalization of one for monopolar line graphs obtained earlier. 相似文献
6.
Guy Wolfovitz 《Random Structures and Algorithms》2012,40(2):254-267
Let H = (V,E) be a k ‐uniform hypergraph with a vertex set V and an edge set E. Let V p be constructed by taking every vertex in V independently with probability p. Let X be the number of edges in E that are contained in V p. We give a condition that guarantees the concentration of X within a small interval around its mean. The applicability of this result is demonstrated by deriving new sub‐Gaussian tail bounds for the number of copies of small complete and complete bipartite graphs in the binomial random graph. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012 相似文献
7.
Alexander K. Kelmans 《Journal of Graph Theory》2000,35(3):206-221
Let G be a graph and p ϵ (0, 1). Let A(G, p) denote the probability that if each edge of G is selected at random with probability p then the resulting spanning subgraph of G is connected. Then A(G, p) is a polynomial in p. We prove that for every integer k ≥ 1 and every k‐tuple (m1, m2, … ,mk) of positive integers there exist infinitely many pairs of graphs G1 and G2 of the same size such that the polynomial A(G1, p) − A(G2, p) has exactly k roots x1 < x2 < ··· < xk in (0, 1) such that the multiplicity of xi is mi. We also prove the same result for the two‐terminal reliability polynomial, defined as the probability that the random subgraph as above includes a path connecting two specified vertices. These results are based on so‐called A‐ and T‐multiplying constructions that are interesting in themselves. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 206–221, 2000 相似文献
8.
Michael Krivelevich Benny Sudakov Nicholas Wormald 《Random Structures and Algorithms》2011,38(3):235-250
An old problem of Erd?s, Fajtlowicz, and Staton asks for the order of a largest induced regular subgraph that can be found in every graph on vertices. Motivated by this problem, we consider the order of such a subgraph in a typical graph on vertices, i.e., in a binomial random graph . We prove that with high probability a largest induced regular subgraph of has about vertices. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 235–250, 2011 相似文献
9.
10.
Christian Löwenstein Anders Sune Pedersen Dieter Rautenbach Friedrich Regen 《Journal of Graph Theory》2011,67(2):96-111
We prove several tight lower bounds in terms of the order and the average degree for the independence number of graphs that are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle‐free graphs of maximum degree at most three due to Heckman and Thomas [Discrete Math 233 (2001), 233–237] to arbitrary triangle‐free graphs. For connected triangle‐free graphs of order n and size m, our result implies the existence of an independent set of order at least (4n?m?1)/7. © 2010 Wiley Periodicals, Inc. J Graph Theory 67:96‐111, 2011 相似文献
11.
We study a scale‐free random graph process in which the number of edges added at each step increases. This differs from the standard model in which a fixed number, m, of edges are added at each step. Let f(t) be the number of edges added at step t. In the standard scale‐free model, f(t) = m constant, whereas in this paper we consider f(t) = [tc],c > 0. Such a graph process, in which the number of edges grows non‐linearly with the number of vertices is said to have accelerating growth. We analyze both an undirected and a directed process. The power law of the degree sequence of these processes exhibits widely differing behavior. For the undirected process, the terminal vertex of each edge is chosen by preferential attachment based on vertex degree. When f(t) = m constant, this is the standard scale‐free model, and the power law of the degree sequence is 3. When f(t) = [tc],c < 1, the degree sequence of the process exhibits a power law with parameter x = (3 ? c)/(1 ? c). As c → 0, x → 3, which gives a value of x = 3, as in standard scale‐free model. Thus no more slowly growing monotone function f(t) alters the power law of this model away from x = 3. When c = 1, so that f(t) = t, the expected degree of all vertices is t, the vertex degree is concentrated, and the degree sequence does not have a power law. For the directed process, the terminal vertex is chosen proportional to in‐degree plus an additive constant, to allow the selection of vertices of in‐degree zero. For this process when f(t) = m is constant, the power law of the degree sequence is x = 2 + 1/m. When f(t) = [tc], c > 0, the power law becomes x = 1 + 1/(1 + c), which naturally extends the power law to [1,2]. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 396–421, 2011 相似文献
12.
We study the phase transition of the minimum degree multigraph process. We prove that for a constant hg ≈︁ 0.8607, with probability tending to 1 as n → ∞, the graph consists of small components on O(log n) vertices when the number of edges of a graph generated so far is smaller than hgn, the largest component has order roughly n2/3 when the number of edges added is exactly hgn, and the graph consists of one giant component on Θ(n) vertices and small components on O(log n) vertices when the number of edges added is larger than hgn. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007 相似文献
13.
Stefanie Gerke Dirk Schlatter Angelika Steger Anusch Taraz 《Random Structures and Algorithms》2008,32(2):236-261
We consider the following variant of the classical random graph process introduced by Erd?s and Rényi. Starting with an empty graph on n vertices, choose the next edge uniformly at random among all edges not yet considered, but only insert it if the graph remains planar. We show that for all ε > 0, with high probability, θ(n2) edges have to be tested before the number of edges in the graph reaches (1 + ε)n. At this point, the graph is connected with high probability and contains a linear number of induced copies of any fixed connected planar graph, the first property being in contrast and the second one in accordance with the uniform random planar graph model. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008 相似文献
14.
Lutz Warnke 《Random Structures and Algorithms》2014,44(3):355-397
The K4‐free process starts with the empty graph on n vertices and at each step adds a new edge chosen uniformly at random from all remaining edges that do not complete a copy of K4. Let G be the random maximal K4‐free graph obtained at the end of the process. We show that for some positive constant C, with high probability as , the maximum degree in G is at most . This resolves a conjecture of Bohman and Keevash for the K4‐free process and improves on previous bounds obtained by Bollobás and Riordan and by Osthus and Taraz. Combined with results of Bohman and Keevash this shows that with high probability G has edges and is ‘nearly regular’, i.e., every vertex has degree . This answers a question of Erd?s, Suen and Winkler for the K4‐free process. We furthermore deduce an additional structural property: we show that whp the independence number of G is at least , which matches an upper bound obtained by Bohman up to a factor of . Our analysis of the K4‐free process also yields a new result in Ramsey theory: for a special case of a well‐studied function introduced by Erd?s and Rogers we slightly improve the best known upper bound.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 355‐397, 2014 相似文献
15.
In this article, we prove three theorems. The first is that every connected graph of order n and size m has an induced forest of order at least with equality if and only if such a graph is obtained from a tree by expanding every vertex to a clique of order either 4 or 5. This improves the previous lower bound of Alon–Kahn–Seymour for , and implies that such a graph has an induced forest of order at least for . This latter result relates to the conjecture of Albertson and Berman that every planar graph of order n has an induced forest of order at least . The second is that every connected triangle‐free graph of order n and size m has an induced forest of order at least . This bound is sharp by the cube and the Wagner graph. It also improves the previous lower bound of Alon–Mubayi–Thomas for , and implies that such a graph has an induced forest of order at least for . This latter result relates to the conjecture of Akiyama and Watanabe that every bipartite planar graph of order n has an induced forest of order at least . The third is that every connected planar graph of order n and size m with girth at least 5 has an induced forest of order at least with equality if and only if such a graph is obtained from a tree by expanding every vertex to one of five specific graphs. This implies that such a graph has an induced forest of order at least , where was conjectured to be the best lower bound by Kowalik, Lu?ar, and ?krekovski. 相似文献
16.
A triangle in a hypergraph is a collection of distinct vertices u, v, w and distinct edges e, f, g with , and . Johansson [Tech. report (1996)] proved that every triangle‐free graph with maximum degree Δ has list chromatic number . Frieze and Mubayi (Electron J Comb 15 (2008), 27) proved that every linear (meaning that every two edges share at most one vertex) triangle‐free triple system with maximum degree Δ has chromatic number . The restriction to linear triple systems was crucial to their proof. We provide a common generalization of both these results for rank 3 hypergraphs (edges have size 2 or 3). Our result removes the linear restriction from 8 , while reducing to the (best possible) result [Johansson, Tech. report (1996)] for graphs. In addition, our result provides a positive answer to a restricted version of a question of Ajtai Erd?s, Komlós, and Szemerédi (combinatorica 1 (1981), 313–317) concerning sparse 3‐uniform hypergraphs. As an application, we prove that if is the collection of 3‐uniform triangles, then the Ramsey number satisfies for some positive constants a and b. The upper bound makes progress towards the recent conjecture of Kostochka, Mubayi, and Verstraëte (J Comb Theory Ser A 120 (2013), 1491–1507) that where C3 is the linear triangle. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 487–519, 2015 相似文献
17.
18.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009 相似文献
19.
20.
We consider random subgraphs of a fixed graph with large minimum degree. We fix a positive integer k and let Gk be the random subgraph where each independently chooses k random neighbors, making kn edges in all. When the minimum degree then Gk is k‐connected w.h.p. for ; Hamiltonian for k sufficiently large. When , then Gk has a cycle of length for . By w.h.p. we mean that the probability of non‐occurrence can be bounded by a function (or ) where . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 143–157, 2017 相似文献