首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A graph G is k‐choosable if its vertices can be colored from any lists L(ν) of colors with |L(ν)| ≥ k for all ν ∈ V(G). A graph G is said to be (k,?)‐choosable if its vertices can be colored from any lists L(ν) with |L(ν)| ≥k, for all ν∈ V(G), and with . For each 3 ≤ k ≤ ?, we construct a graph G that is (k,?)‐choosable but not (k,? + 1)‐choosable. On the other hand, it is proven that each (k,2k ? 1)‐choosable graph G is O(k · ln k · 24k)‐choosable. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

2.
A graph G = (V, E) is called weakly four‐connected if G is 4‐edge‐connected and G ? x is 2‐edge‐connected for all xV. We give sufficient conditions for the existence of ‘splittable’ vertices of degree four in weakly four‐connected graphs. By using these results we prove that every minimally weakly four‐connected graph on at least four vertices contains at least three ‘splittable’ vertices of degree four, which gives rise to an inductive construction of weakly four‐connected graphs. Our results can also be applied in the problem of finding 2‐connected orientations of graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 217–229, 2006  相似文献   

3.
An edge-magic total labeling on G is a one-to-one map λ from V(G)∪E(G) onto the integers 1,2,…,|V(G)∪E(G)| with the property that, given any edge (x,y), λ(x)+λ(x,y)+λ(y)=k for some constant k. The labeling is strong if all the smallest labels are assigned to the vertices. Enomoto et al. proved that a graph admitting a strong labeling can have at most 2|V(G)|-3 edges. In this paper we study graphs of this maximum size.  相似文献   

4.
It is well known that a graph G of order p ≥ 3 is Hamilton-connected if d(u) + d(v) ≥ p + 1 for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs G of order at least 3 for which d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| + 1 for any path uwv with uvE(G), where N(x) denote the neighborhood of a vertex x. We prove that a graph G satisfying this condition has the following properties: (a) For each pair of nonadjacent vertices x, y of G and for each integer k, d(x, y) ≤ k ≤ |V(G)| − 1, there is an xy path of length k. (b) For each edge xy of G and for each integer k (excepting maybe one k η {3,4}) there is a cycle of length k containing xy. Consequently G is panconnected (and also edge pancyclic) if and only if each edge of G belongs to a triangle and a quadrangle. Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph G is related to the edge clique cover number θ E (G) of the graph G via θ E (G) ? |V(G)| + 2 ≤ k(G) ≤ θ E (G). We first show that for any positive integer m satisfying 2 ≤ m ≤ |V(G)|, there exists a graph G with k(G) = θ E (G) ? |V(G)| + m and characterize a graph G satisfying k(G) = θ E (G). We then focus on what we call competitively tight graphs G which satisfy the lower bound, i.e., k(G) = θ E (G) ? |V(G)| + 2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.  相似文献   

6.
A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. Given a list assignment L = {L(v)|vV} of G, we say G is acyclically L‐list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this article we prove that every planar graph without 4‐cycles and without intersecting triangles is acyclically 5‐choosable. This improves the result in [M. Chen and W. Wang, Discrete Math 308 (2008), 6216–6225], which says that every planar graph without 4‐cycles and without two triangles at distance less than 3 is acyclically 5‐choosable. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

7.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

8.
A graph G is called ‐choosable if for any list assignment L that assigns to each vertex v a set of a permissible colors, there is a b‐tuple L‐coloring of G . An (a , 1)‐choosable graph is also called a‐choosable. In the pioneering article on list coloring of graphs by Erd?s et al.  2 , 2‐choosable graphs are characterized. Confirming a special case of a conjecture in  2 , Tuza and Voigt  3 proved that 2‐choosable graphs are ‐choosable for any positive integer m . On the other hand, Voigt 6 proved that if m is an odd integer, then these are the only ‐choosable graphs; however, when m is even, there are ‐choosable graphs that are not 2‐choosable. A graph is called 3‐choosable‐critical if it is not 2‐choosable, but all its proper subgraphs are 2‐choosable. Voigt conjectured that for every positive integer m , all bipartite 3‐choosable‐critical graphs are ‐choosable. In this article, we determine which 3‐choosable‐critical graphs are (4, 2)‐choosable, refuting Voigt's conjecture in the process. Nevertheless, a weaker version of the conjecture is true: we prove that there is an even integer k such that for any positive integer m , every bipartite 3‐choosable‐critical graph is ‐choosable. Moving beyond 3‐choosable‐critical graphs, we present an infinite family of non‐3‐choosable‐critical graphs that have been shown by computer analysis to be (4, 2)‐choosable. This shows that the family of all (4, 2)‐choosable graphs has rich structure.  相似文献   

9.
A proper vertex coloring of a graph G=(V, E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L={L(v)|vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this paper we prove that every planar graph G without 4‐cycles is acyclically 6‐choosable. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 307–323, 2009  相似文献   

10.
For a connected graph the restricted edge‐connectivity λ′(G) is defined as the minimum cardinality of an edge‐cut over all edge‐cuts S such that there are no isolated vertices in GS. A graph G is said to be λ′‐optimal if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G defined as ξ(G) = min{d(u) + d(v) ? 2:uvE(G)}, d(u) denoting the degree of a vertex u. A. Hellwig and L. Volkmann [Sufficient conditions for λ′‐optimality in graphs of diameter 2, Discrete Math 283 (2004), 113–120] gave a sufficient condition for λ′‐optimality in graphs of diameter 2. In this paper, we generalize this condition in graphs of diameter g ? 1, g being the girth of the graph, and show that a graph G with diameter at most g ? 2 is λ′‐optimal. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 73–86, 2006  相似文献   

11.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L = {L(v): v: ∈ V}, there exists a proper acyclic coloring ? of G such that ?(v) ∈ L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L (v)|≥ k for all vV, then G is acyclically k‐choosable. In this article, we prove that every planar graph G without 4‐ and 5‐cycles, or without 4‐ and 6‐cycles is acyclically 5‐choosable. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 245–260, 2007  相似文献   

12.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

13.
The concept of the line graph can be generalized as follows. The k-line graph Lk(G) of a graph G is defined as a graph whose vertices are the complete subgraphs on k vertices in G. Two distinct such complete subgraphs are adjacent in Lk(G) if and only if they have in G k ? 1 vertices in common. The concept of the total graph can be generalized similarly. Then the Perfect Graph Conjecture will be proved for 3-line graphs and 3-total graphs. Moreover, perfect 3-line graphs are not contained in any of the known classes of perfect graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

15.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

16.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L‐list colorable if for a given list assignment L = {L(v): vV}, there exists a proper coloring c of G such that c (v) ∈ L(v) for all vV. If G is L‐list colorable for every list assignment with |L (v)| ≥ k for all vV, then G is said k‐choosable. A graph is said to be acyclically k‐choosable if the obtained coloring is acyclic. In this paper, we study the links between acyclic k‐choosability of G and Mad(G) defined as the maximum average degree of the subgraphs of G and give some observations about the relationship between acyclic coloring, choosability, and acyclic choosability. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 281–300, 2006  相似文献   

17.
Very Asymmetric Marking Games   总被引:1,自引:0,他引:1  
We investigate a competitive version of the coloring number of a graph G = (V, E). For a fixed linear ordering L of V let s (L) be one more than the maximum outdegree of G when G is oriented so that xy if x < L y. The coloring number of G is the minimum of s (L) over all such orderings. The (a, b)-marking game is played on a graph G = (V, E) as follows. At the start all vertices are unmarked. The players, Alice and Bob, take turns playing. A play consists of Alice marking a unmarked vertices or Bob marking b unmarked vertices. The game ends when there are no remaining unmarked vertices. Together the players create a linear ordering L of V defined by x < y if x is marked before y. The score of the game is s (L). The (a, b)-game coloring number of G is the minimum score that Alice can obtain regardless of Bob’s strategy. The usual (1, 1)-marking game is well studied and there are many interesting results. Our main result is that if G has an orientation with maximum outdegree k then the (k, 1)-game coloring number of G is at most 2k + 2. This extends a fundamental result on the (1, 1)-game coloring number of trees. We also construct examples to show that this bound is tight for many classes of graphs. Finally we prove bounds on the (a, 1)-game coloring number when a < k.  相似文献   

18.
A graph G is equitably k‐choosable if for every k‐list assignment L there exists an L‐coloring of G such that every color class has at most vertices. We prove results toward the conjecture that every graph with maximum degree at most r is equitably ‐choosable. In particular, we confirm the conjecture for and show that every graph with maximum degree at most r and at least r3 vertices is equitably ‐choosable. Our proofs yield polynomial algorithms for corresponding equitable list colorings.  相似文献   

19.
The strong chromatic index of a class of graphs   总被引:1,自引:0,他引:1  
The strong chromatic index of a graph G is the minimum integer k such that the edge set of G can be partitioned into k induced matchings. Faudree et al. [R.J. Faudree, R.H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211] proposed an open problem: If G is bipartite and if for each edge xyE(G), d(x)+d(y)≤5, then sχ(G)≤6. Let H0 be the graph obtained from a 5-cycle by adding a new vertex and joining it to two nonadjacent vertices of the 5-cycle. In this paper, we show that if G (not necessarily bipartite) is not isomorphic to H0 and d(x)+d(y)≤5 for any edge xy of G then sχ(G)≤6. The proof of the result implies a linear time algorithm to produce a strong edge coloring using at most 6 colors for such graphs.  相似文献   

20.
The notion of a competition graph was introduced by Cohen in 1968. The competition graph C(D) of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. In 1978, Roberts defined the competition number k(G) of a graph G as the minimum number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. In 1982, Opsut gave two lower bounds for the competition number of a graph. In this paper, we give a generalization of these two lower bounds for the competition number of a graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号