首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐p‐phenylenediamine (BPBPPD), was prepared by the condensation of p‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). Novel aromatic poly(ether amide amide ether ketone ketone)s (PEAAEKKs) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of BPBPPD with a mixture of terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), over a wide range of TPC/IPC molar ratios, in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influences of reaction conditions on the preparation of polymers were examined. The polymers obtained were characterized by different physico–chemical techniques such as FT‐IR, Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and wide angle X‐ray diffraction (WAXD). The polymers with 70–100 mol% IPC are semicrystalline and have remarkably increased Tgs over commercially available poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) due to the incorporation of amide groups in the main chain. The polymers with 70–80 mol% IPC had not only high Tgs of 209–213°C, but also moderate Tms of 339–348°C, which are suitable for melt processing. The polymers with 70–80 mol% IPC had tensile strengths of 107.5–109.8 MPa, Young's moduli of 2.53–2.69 GPa, and elongations at break of 9–11% and exhibited high thermal stability and good resistance to organic solvents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A new monomer, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP), was prepared by Friedel–Crafts reaction of 4‐bromobenzoyl chloride and diphenyl, followed by condensation with potassium phenoxide. Novel poly(ether ketone ketone) (PEKK)/poly(ether ketone diphenyl ketone ether ketone ketone) (PEKDKEKK) copolymers were synthesized by electrophilic Friedel–Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of diphenyl ether (DPE) and BPOBDP, in the presence of anhydrous aluminum chloride and N‐methyl‐pyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers obtained were characterized by various analytical techniques such as FT‐IR, DSC, TGA, and wide‐angle X‐ray diffraction (WAXD). The results showed that the resulting copolymers exhibited excellent thermal stability due to the existence of diphenyl moieties in the main chain. The glass transition temperatures are above 152°C, the melting temperatures are above 276°C, and the temperatures at a 5% weight loss are above 548°C in nitrogen. The copolymers with 50–70 mol% BPOBDP had tensile strengths of 101.5–102.7 MPa, Young's moduli of 3.23–3.41 GPa, and elongations at break of 12–17%. All these copolymers were semicrystalline and insoluble in organic solvents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
新型多氯取代聚芳醚酮砜的合成与表征   总被引:1,自引:0,他引:1  
新型多氯取代聚芳醚酮砜的合成与表征;聚芳醚酮砜;四氯对苯二甲酰氯;低温溶液缩聚;无规共聚物  相似文献   

4.
几种甲基取代的聚醚酮酮的合成与表征   总被引:1,自引:0,他引:1  
盛寿日  宋才生 《应用化学》1999,16(2):109-107
聚芳醚酮是一类热、电、机械性能优异的热塑性工程塑料,其合成方法有亲电取代法和亲核取代法.近年来,通过改变主链上醚酮键的比例和次序以及在主链上引入sp3杂化原子团,如砜基、烷基,对其进行结构上的改性研究已有很多报道[14].另一种结构上的改性研究是在...  相似文献   

5.
甲基取代聚芳醚酮的合成与表征;甲基侧基;缩聚;热性能  相似文献   

6.
Poly(ether diphenyl ether ketone) (PEDEK) synthesized by the nucleophilic route has the following chemical structure: At some given temperatures for a given time isothermally crystallized PEDEK sample exhibits two endothermic peaks which are similar to PEEK and PEEKK. The melting behavior of PEDEK crystallized from the glassy state is investigated through differential scanning calorimeter (DSC). We consider that the high-melting peak is related to the perfect crystals and the low-melting peak is associated with a few imperfect crystals. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
含氰基聚芳醚醚酮酮(PEEKK)的合成   总被引:2,自引:0,他引:2  
二苯氧基苯甲腈;对苯二甲酰氯;低温溶液缩聚;含氰基聚芳醚醚酮酮(PEEKK)的合成  相似文献   

8.
新型含磷双酚A型共聚醚醚酮的合成与性能   总被引:7,自引:0,他引:7  
新型含磷双酚A型共聚醚醚酮的合成与性能;溶液缩聚;含磷单体  相似文献   

9.
Binary melt‐blended mixtures of two aryl ether ketone polymers (i.e., a new poly(aryl ether ketone) (code name PK99) and poly(ether ether ketone) (PEEK), have been studied. Polymer miscibility in glassy amorphous (or melt) domains has been demonstrated for the binary blend comprising of two aryl‐ether‐ketone‐type semicrystalline polymers. Composition‐dependent, single Tg was observed within full composition range in the PK99/PEEK blends, and the narrow Tg breadth also suggests that the scale of mixing was fine and uniform. To better resolve any possible overlapping Tg's, physical aging was imposed on a comparison set of blend samples for the purpose of improving detectability of overlapped multiple transitions if existing. The result still showed one single Tg. The relative sharp Tg and lack of cloud point transition suggest that the scale of molecular intermixing is good. Phase homogeneity was further confirmed using optical and scanning electron microscopy. The X‐ray diffractograms suggest that isomorphism does not exist in the PK99/PEEK blends and that the crystal forms of the respective polymers remain distinct and unchanged by the miscibility in the amorphous region. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1485–1494, 1999  相似文献   

10.
聚醚醚酮(PEEK)自工业化以来[1],由于其优异的性能已在机械、航天等领域得到广泛应用.各种聚芳醚酮类聚合物相继被开发出来.但以亲电缩聚路线制备聚醚醚酮醚酮(PEEKEK)的报道较少[2].本文以二苯醚和4-氟苯甲酰氯为主要反应试剂,采取付氏酰基化...  相似文献   

11.
One new synthesis route was first designed to synthesize the biphenyl acid chloride (BPACl), and then a series of novel poly (aryl ether nitrile ether ketone ketone) (PENEKK)/poly (aryl ether nitrile ether ketone biphenyl ketone) (PENEKBK) copolymers with different controlled structure compositions were synthesized by electrophilic polycondensation and varying the molar ratio of BPACl to terephthaloyl chloride (TPC). The obtained PENEKK/PENEKBK copolymers were characterized by different physical and chemical techniques. The results showed, the copolymers with 10–50% molar contents of biphenyl moities exhibited good thermal properties with glass transition temperatures (Tgs) of 184–196°C, decomposition temperatures (Tds) of 498–515°C, and good solubility in organic solvents (N‐Methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), and DMSO), indicating that they would have good potential for solvent processing. The thin films of the polymers had tensile strengths of 93.6–101.5 MPa, Young's moduli of 3.03–3.32 GPa, elongations at break of 9–14%, indicating they were strong materials. The densities of the obtained polymers were 1.31–1.40 g/cm?3, which were far lower than those of some main inorganic materials (such as Fe, nearly 7.8 g/cm?3), indicating that they would have possible potential for substituting some inorganic materials used as high temperature materials in some areas due to the merits of lightweight. Thus, the copolymers with 10–50% molar contents of biphenyl moities were promising polymer materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n ≈ 2 for both melt and cold crystallization. With the Hoffman–Weeks method, the equilibrium melting point is estimated to be 406 °C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (Kg) of the isothermal melt and cold crystallization is estimated. In addition, the Kg value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1992–1997, 2000  相似文献   

13.
聚醚砜醚酮的合成与性能   总被引:1,自引:1,他引:1  
以4,4′-二羟基二苯砜和4,4′-二氟二苯酮为单体, 通过溶液缩聚合成了聚醚砜醚酮(PESEK), 其分子结构相当于聚醚砜(PES)与聚醚醚酮(PEEK)的交替共聚物. 在共聚物分子中, 存在砜基、醚基和酮基, 整个结构单元形成了大共轭体系, 聚合物属无定形聚合物, 玻璃化转变温度(Tg)为198 ℃, 介于PEEK和PES的Tg之间, 其热稳定性和加工性能优于PES, 而力学性能与PES接近.  相似文献   

14.
Thermal behavior and phase behavior in blends of liquid crystalline poly(aryl ether ketone) with lateral methoxy groups (M-PAEK) and poly(aryl ether ether ketone) containing thioether units (S-PEEK) have been investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM) techniques. The results indicate that the composition of the blends has great effect on the phase behavior and morphology. Thin films of pure M-PAEK and S-PEEK crystallized from the melts exhibit typical mosaic and spherulitic structures, respectively. For the blends with higher M-PAEK contents (> 50%), an unusual ring-banded spherulite with structural discontinuity is formed. The bright core and rings of the ring-banded spherulites under PLM are composed of M-PAEK phase, while the dark rings consist mainly of S-PEEK phase. For the 50:50 M-PAEK/S-PEEK blend, the ring-banded spherulites and S-PEEK spherulites coexist, which implies that a partial phase separation between the two components takes place in the melting state. In S-PEEK-rich blends, a volume-filled spherulite is produced. In addition, the effect of isothermal crystallization temperature on the phase behavior, especially the ring-banded spherulite formation in the blends, is discussed.  相似文献   

15.
Poly(ether ether ketone)s containing alkyl groups were prepared by nucleophilic substitution reaction of alkyl-substituted difluoro diaryl ethers with hydroquinone or by electrophilic substitution reaction of alkyl-substituted diaryl ether with 4,4′-oxydibenzoic acid in PPMA. Polycondensations proceeded smoothly and produced polymers having inherent viscosities up to 0.5-–1.6 dL/g. The polymers were quite soluble in strong acid, dipolar aprotic solvents, and chloroform at room temperature. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight loses of the polymers were observed in the range above 450°C in nitrogen atmosphere. The glass transition temperatures of the polymers ranged from 128 to 146°C. Furthermore, Polymer 3b functioned as a photosensitive resist of negative type for UV radiation. The resist had a sensitivity of 42 mJ/cm2 and a contrast of 2.5, when it was postbaked at 100°C for 10 min, followed by development with THF/acetone at room temperature. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
A novel series of poly(aryl ether sulfone ketone)s (PPESKs) containing phthalazinone and biphenyl moieties were prepared by two-step nucleophilic polycondensation reaction. The ^-Mw values of these copolymers were between 38,330 and 67,900. The glass transition temperatures (Tg) and 5% decomposition temperatures were ranged in 253-269 ℃ and 488-500 ℃, respectively, The structures of these copolymers were confirmed by FT-IR and ^1H NMR. Moreover, all the resultant copolymers were amorphous determined by wide angle X-ray diffraction (WAXD).  相似文献   

17.
(夹)二氧蒽改性聚芳醚酮酮   总被引:3,自引:1,他引:2  
盛寿日  刘晓玲  程彩霞  宋才生 《应用化学》2001,18(12):1004-1006
共聚物;合成;(夹)二氧蒽改性聚芳醚酮酮  相似文献   

18.
刘勇军  钟鸣  宋琤  盛寿日  侯豪情  宋才生 《应用化学》2018,35(11):1289-1294
以苯酚、对二溴苯及苯基磷酰二氯为原料合成出二(4-苯氧基苯基)苯基氧磷(BPOPPO)。 三氯化铝(AlCl3)为催化剂,通过缩聚反应,BPOPPO与对苯二甲酰氯(TPC)反应制备出一种含有三苯基氧磷结构的聚醚醚酮酮(P-PEEKK)树脂。 采用傅里叶变换红外光谱仪(FT-IR)、差示扫描量热仪(DSC)、热重分析仪(TGA)和广角X射线衍射(WAXD)等技术手段对P-PEEKK树脂的结构和性能进行表征。 结果表明,P-PEEKK树脂属于非晶聚合物,玻璃化转变温度(Tg)较高,为190.5 ℃;热分解温度(T5%)为515 ℃,耐热性能较好;极限氧指数(LOI)为42,阻燃性能好,为难燃材料;易溶解于氯仿、1,2-二氯乙烷、N,N-二甲基乙酰胺等有机溶剂中,溶解性能较好,便于涂膜加工;拉伸强度为62 MPa,力学性能较好。  相似文献   

19.
以邻氟对苯二酚和4,4′-二氟三苯二甲酮为原料通过亲核缩聚反应,合成含氟聚醚醚酮酮(FPEEKK)材料。 用FTIR、1H NMR和WAXD进行了结构表征,用DSC、TGA测试了热性能,并研究了聚合物的溶解性、吸水性、介电性能及光学性能。 结果表明,含氟聚醚醚酮酮具有较好的热性能(N2气气氛中,5%热分解温度为505 ℃);能溶于氯仿、四氢呋喃和N,N-二甲基甲酰胺等有机溶剂;具有较低的吸水率(0.24%)和介电常数(ε=3.0);在近红外区1300和1550 nm处吸收非常弱。  相似文献   

20.
The ability to achieve high molecular weight poly(ether ketone)s from the polycondensation of bis(aryl chloride)s with bis(phenolate)s has been consistently demonstrated. The polymerizations presented here help to delineate for specific bis(aryl chloride)/bisphenolate pairs the reaction conditions required to obtain high molecular weight polymers. Polycondensation of 1,3-bis(4-chlorobenzoyl)-5-tert-butylbenzene ( 6 ) and 2,2′-bis(4-chlorobenzoyl)-biphenyl ( 15 ) with various bisphenolates as well as of 2,2′-bis(4-hydroxyphenoxy)biphenyl ( 33 ) with 4,4′-dichlorobenzophenone ( 41 ) and 1,3-bis(4-chlorobenzoyl)benzene ( 43 ) were used as representative model systems to select reaction conditions that led to high molecular weight polymers. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号