首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A novel PLA-based polymer containing reactive pendent ketone or hydroxyl groups was synthesized by the copolymerization of L-lactide with epsilon-caprolactone-based monomers. The polymer was activated with NPC, resulting in an amine-reactive polymer which was then cast into thin polymeric films, either alone or as part of a blend with PLGA, before immersion into a solution of the cell adhesion peptide GRGDS in PBS buffer allowed for conjugation of GRGDS to the film surfaces. Subsequent 3T3 fibroblast cell adhesion studies demonstrated an increase in cellular adhesion and spreading over films cast from unmodified PLGA. Hence the new polymer can be used to obtain covalent linkage of amine-containing molecules to polymer surfaces.  相似文献   

2.
Alternating copolymers of glycolic (G) and lactic (L) acid were prepared by the condensation of the preformed dimers: LLG and LracG. By size exclusion chromatography (THF, PS standards), poly(LLG) exhibited a molecular weight (Mn) of 15.6 kg mol?1, with a weight average molecular weight (Mw) of 26.9 kg mol?1 and a PDI of 1.72. The Mn for poly(LracG) was 9.2 kg mol?1, with a Mw of 12.9 kg mol?1 and a PDI of 1.40. The NMR spectra of poly(LLG) were consistent with an isotactic microstructure. NMR spectra of the racemic poly(LracG) were consistent with an atactic structure. The methylene region of the 1H NMR spectrum showed a tetrad level of resolution of the nearby stereochemical relationships, for example, iii. Resonances for other groups in both the 1H and 13C NMR spectra gave only a triad level of resolution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4704–4711, 2008  相似文献   

3.
An efficient approach to copolymers of glycolic and lactic acids applied in biomedical materials was developed using ring-opening polymerization catalysts based on alkoxy complexes of ‘biometals’ (Mg, Al, and Zn) and 3-methyl- 1,4-dioxane-2,5-dione and glycolide as comonomers.  相似文献   

4.
Block, random, and gradient copolymers of styrene (S) and acrylic acid (AA) are synthesized by conventional or controlled radical polymerization, and their glass transition temperature (Tg) behaviors are compared. The location and breadth of the Tgs are determined using derivatives of differential scanning calorimetry heating curves. Each S/AA random copolymer exhibits one narrow Tg, consistent with a single phase of limited compositional nanoheterogeneity. Block copolymers exhibit two narrow Tgs originating from nanophase separation into ordered domains with nearly pure S or nearly pure AA repeat units. Each gradient copolymer exhibits a Tg response with a ~50–56 °C breadth that extends beyond the upper Tg of the block copolymers. For copolymers of similar composition, the maximum value in the gradient copolymer Tg response is consistent with that of a random copolymer, which has an enhanced Tg relative to poly(acrylic acid) due to more effective hydrogen bonding when AA units are separated along the chain backbone by S units. These results indicate that gradient copolymers with ordered nanostructures can be rationally designed, which exhibit broad glass transitions that extend to higher temperature than the Tgs observed with block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2842–2849, 2007  相似文献   

5.
Zirconium(IV) acetylacetonate [Zr(acac)4] is a very good initiator for the terpolymerization of glycolide with L‐lactide and ?‐caprolactone. The microstructure of the obtained terpolymer was determined by NMR spectroscopy and then compared with terpolymers obtained in the presence of stanous(II) octoate [Sn(oct)2]. Samples obtained with Zr(acac)4 were characterized by a segmental‐chain microstructure. Apart from relatively long lactidyl microblocks, there were also segments made of random copolymer of glycolide with lactide. Such a structure is formed as a result of strong transesterification caused by active caproyl chain endings attacking the glycolidyl groups. Domination of this type of transestrification is shown. The growth of terpolymer chains and the influence of transesterification on gradual changes of the microstructure of the forming terpolymer chain were examined. Significant differences among glycolide, lactide, and the least reactive caprolactone were observed. The results of differential scanning calorimetric examinations of the obtained terpolymers are presented. Differences between the structures of random terpolymers obtained during terpolymerization initiated by Sn(oct)2 and those obtained by Zr(acac)4 influence their thermal properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3129–3143, 2002  相似文献   

6.
Films of poly(L-lactide) [i.e., poly(L-lactic acid) (PLLA)] and L-lactide copolymers with glycolide [P(LLA-GA)(81/19)], epsilon-caprolactone [P(LLA-CL)(82/18)], D-lactide [P(LLA-DLA)(95/5), (77/23), and (50/50)] were prepared and a comparative study on the effects of comonomer type and content on alkaline and proteinase K-catalyzed hydrolyses of the films was carried out. The hydrolyzed films were investigated using gravimetry (weight loss and water absorption), differential scanning calorimetry (DSC), polarimetry, and gel permeation chromatography (GPC). To exclude the effects of molecular weight and crystallinity on the hydrolysis, the films were prepared from polymers having similar molecular weights and made amorphous by melt-quenching. It was found that incorporation of hydrophilic glycolide units in L-lactide chains raises the alkaline and enzymatic hydrolyzabilities, whereas incorporation of hydrophobic epsilon-caprolactone units in L-lactide chains reduces the alkaline and enzymatic hydrolyzabilities. On the other hand, incorporation of D-lactide units with the same hydrophilicity of L-lactide units increases the alkaline hydrolyzability but decreases the enzymatic hydrolyzability. The alkaline hydrolyzability of the films of L-lactide copolymers with different kinds of comonomers and P(LLA-DLA) with different D-lactide unit contents can be closely related to their hydrophilicity. On the other hand, the enzymatic hydrolyzability of L-lactide copolymer films with different kinds of comonomers is mainly determined by hydrophilicity, while that of P(LLA-DLA) films is determined by the averaged L-lactyl and D-lactyl unit sequence lengths. The catalytic effect of proteinase K relative to that of alkali on the hydrolysis of P(LLA-DLA)(77/23) and P(LLA-GA)(81/19) films normalized by that of PLLA was lower than unity, whereas the normalized relative catalytic effect of proteinase K on the hydrolysis of P(LLA-CL)(82/18) film was higher than unity, meaning that despite low absolute alkaline and enzymatic hydrolyzability of the P(LLA-CL)(82/18) film, the catalytic effect of proteinase K may be maintained for this copolymer film, probably because of its blocky structure.  相似文献   

7.
The glass transition of poly(L-lactic acid) (PLLA) occurs not far above typical service temperatures (room or body temperatures) which has consequences on the material properties during its use, such as damping or the occurrence of structural relaxation. This work aims at characterising the glass transition dynamics of a semi-crystalline PLLA using both dynamic mechanical analysis (DMA) and thermally stimulated recovery (TSR). The main viscoelastic parameters have been characterised at 1 Hz using DMA and the master curve obtained after isothermal experiments at different temperatures provided a full picture of the solid-state rheological behaviour throughout a wide frequency range. The activation energies calculated from the shift factors agree with the TSR ones, exhibiting a maximum near the T(g). Above the T(g), the results can be described with the WLF model. In the glassy state, the activation energy decreases with decreasing temperatures being always higher than the prediction of the Adam and Gibbs theory, at least down to temperatures 30 degrees C below the T(g). This suggests the existence of non-arrested degrees of freedom in the glassy state, being consistent with the existence of a significant degree of cooperativity in the TSR results.  相似文献   

8.
New ether dimer (ED‐Eh) and diester (EHDE) derivatives of α‐(hydroxymethyl)acrylate, each having two 2‐ethylhexyl side chains, and an amine‐linked di(2‐ethylhexyl)acrylate (AL‐Eh), having three 2‐ethylhexyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature, Tg. The free radical polymerizations of these monomers yielded high‐molecular–weight polymers. Cyclopolymer formation of ED‐Eh and AL‐Eh was confirmed by 13C NMR analysis and the cyclization efficiencies were found to be very high (~100%). Copolymers of ED‐Eh, EHDE, and AL‐Eh with methyl methacrylate (MMA) showed significant Tg decreases over poly(methyl methacrylate) (PMMA) due to 2‐ethylhexyl side groups causing “internal” plasticization. Comparison of the Tg's of the copolymers of 2‐ethylhexyl methacrylate, ED‐Eh, EHDE, and AL‐Eh with MMA revealed that the impacts of these monomers on depression of Tg's are identical with respect to the total concentration of the pendent groups. This is consistent with an earlier study involving copolymers of monomers comprising one and two octadecyl side groups with MMA. That is, the magnitude of decrease in Tg's was quantitatively related to the number of the 2‐ethylhexyl pendent groups in the copolymers rather than their placement on the same or randomly incorporated repeat units. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2302–2310, 2010  相似文献   

9.
10.
The role of hydrogen bonding in promoting intermolecular cohesion and higher glass‐transition temperatures of polymer is a subject of longstanding interest. A series of poly(vinylphenol‐co‐vinylpyrrolidone) copolymers were prepared by the free‐radical copolymerization of acetoxystyrene and vinylpyrrolidone; this was followed by the selective removal of the acetyl protective group, with corresponding and significant glass‐transition‐temperature increases after this procedure. The incorporation of acetoxystyrene into poly(vinylpyrrolidone) resulted in lower glass‐transition temperatures because of the reduced dipole interactions in its homopolymers. However, the deacetylation of acetoxystyrene to transform the poly(vinylphenol‐co‐vinylpyrrolidone) copolymer enhanced the higher glass‐transition temperature because of the strong hydrogen bonding in the copolymer chain. The thermal properties and hydrogen bonding of these two copolymers were investigated with differential scanning calorimetry and Fourier transform infrared spectroscopy, and good correlations between the thermal behaviors and IR results were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2313–2323, 2002  相似文献   

11.
Melt polycondensation was used to prepare a systematic series of random and amorphous copolyesters using the following cycloaliphatic diesters: dimethyl‐1,4‐cyclohexane dicarboxylate (DMCD), dimethyl bicyclo[2.2.1]heptane‐1,4‐dicarboxylate (DMCD‐1), dimethyl bicyclo[2.2.2]octane‐1,4‐dicarboxylate (DMCD‐2), dimethyl bicyclo[3.2.2]nonane‐1,5‐dicarboxylate (DMCD‐3), 1,4‐dimethoxycarbonyl‐1,4‐dimethylcyclohexane (DMCD‐M) and the aliphatic diols: ethylene glycol (EG) and 1,4‐cyclohexane dimethanol (CHDM). The polymer compositions were determined by nuclear magnetic resonance (NMR) and the molecular weights were determined using size exclusion chromatography (SEC). The polyesters were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The copolyester based on DMCD‐2 was observed to have a higher glass transition temperature (Tg up to 115 °C) than the other copolyesters of this study. For poly[x(DMCD‐2)y(DMCD) 30(EG)70(CHDM)], Tg increases linearly with increase of DMCD‐2 mole content. DMA showed that all of the cycloaliphatic copolyesters have secondary relaxations, resulting from the conformational transitions of the cyclohexylene rings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2162–2169, 2010  相似文献   

12.
Star‐shaped homo‐ and copolymers were synthesized in a controlled fashion using two different initiating systems. Homopolymers of ε‐caprolactone, L ‐lactide, and 1,5‐dioxepan‐2‐one were firstly polymerized using (I) a spirocyclic tin initiator and (II) stannous octoate (cocatalyst) together with pentaerythritol ethoxylate 15/4 EO/OH (coinitiator), to give polymers with identical core moieties. Our gained understanding of the versatile and controllable initiator systems kinetics, the transesterification reactions occurring, and the role which the reaction conditions play on the material outcome, made it possible to tailor the copolymer microstructure. Two strategies were used to successfully synthesize copolymers of different microstructures with the two initiator systems, i.e., a more multiblock‐ or a block‐structure. The correct choice of the monomer addition order enabled two distinct blocks to be created for the copolymers of poly(DXO‐co‐LLA) and poly(CL‐co‐LLA). In the case of poly(CL‐co‐DXO), multiblock copolymers were created using both systems whereas longer blocks were created with the spirocyclic tin initiator. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 1249–1264, 2008  相似文献   

13.
Poly(sulfone‐arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried out at high temperature (280 °C) in the presence of a catalyst, whereas the polymerization with terephthalic chloride was conducted in solution at low temperature in the presence of an acid acceptor. High‐molecular weight copolymers (ηinh ~ 0.60 dL/g) could be obtained through both methods. The copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, DMA, and differential scanning calorimetry measurements and were found to exhibit high Tg values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3904–3913, 2009  相似文献   

14.
Positron annihilation lifetime spectroscopy (PALS), density, and differential scanning calorimetric (DSC) measurements were used to study systematically the variation of the glass‐transition temperature (Tg) and the size v and number density Nh of local free volumes in n‐alkyl‐branched polypropylenes. The samples were metallocene‐catalyzed propylene copolymers with different α‐olefins (from C4 to C16) and a different α‐olefin content (between 0 and 20 mol %). From the total specific volume and crystallinity the specific volume of the amorphous phase Va was estimated and used to calculate the fractional free (hole) volume h and value of Nh. The variations of Tg, v, Va, h, and Nh were related to the degree (number and length) of branching. Tg decreases and v increases linearly with the number and length of n‐alkyl branches. This behavior was attributed to an increased segmental mobility caused by branching. Both values, Tg and v, follow linear master curves as a function of the degree of branching (DB) if this is defined as the number of all side‐chain carbons with respect to a total of 1000 (main‐chain and side‐chain) carbons. Only propylene/1‐butene copolymers deviated from these relations. A linear relation between v and Tg was also found. The number density of holes was estimated to be Nh = 0.49(±0.07) nm?3 and Nh′ = 0.58(±0.11) × 1021 g?1, respectively. It shows a slight variation with the DB, which is also seen in the behavior of the specific volume Va. This variation was explained by the appearance of sterical hindrances resulting from short‐chain branches that may prevent an efficient packing of the chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 434–453, 2002; DOI 10.1002/polb.10108  相似文献   

15.
The aim of this article is to show a new method of copolymerizing glycolide and caprolactone with the low‐toxicity zirconium(IV) acetylacetonate and zirconium(IV) chloride as initiators. Such initiators enabled us to obtain copolymers with very good efficiency and good mechanical properties. The reactivity of the initiators was defined, and the chain‐propagation process was examined. On the basis of an NMR examination and differential scanning calorimetry thermograms, we found that the samples obtained at 100 °C with the initiators were characterized by a segmental chain microstructure, which provided good mechanical properties. When the synthesis was carried out at 150 °C, a more randomized structure was obtained, which caused crucial changes in the properties of the copolymers and decreases in the mechanical properties. Because of their properties, the obtained copolymers could be successfully applied as degradable surgical implants or drug carriers. The results show that the copolymers obtained with zirconium(IV) acetylacetonate and chloride could successfully replace ones obtained in the presence of tin compounds as far as medical applications are concerned. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1379–1394, 2002  相似文献   

16.
The ring-opening metathesis copolymerizations of deltacyclene, substituted deltacyclene, and norbornene was achieved using RuCl3, ReCl5, and molybdenum alkylidene catalysts. The reaction conditions employed are similar to those used previously in the syntheses of homopolymers. The low conversion copolymerization of deltacyclene and norbornene showed that deltacyclene is more reactive than norbornene by a factor of 2.4. The characterization and physical properties of these copolymers were determined using NMR, GPC, Tg, and viscosity measurements. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
Since poly(lactic acid) is the biodegradable polyester having low immunogenicity and good biocompatibility, it is utilized as a medical material. However, poly(lactic acid) is a water-insoluble crystalline polymer having no reactive side-chain group. Thus, the use of poly(lactic acid) is limited. To modify the properties of poly(lactic acid) and to introduce the functionalized pendant groups to poly(lactic acid), we synthesized two kinds of lactic acid-depsipeptide copolymers with reactive pendant groups, namely poly[LA-(Glc-Lys)] and poly[LA-(Glc-Asp)]. This was done through ring-opening copolymerizations of L-lactide with the corresponding protected cyclodepsipeptides, cyclo[Glc-Lys(Z)] and cyclo[Glc-Asp(OBzl)], and subsequent deprotection of benzyloxycarbonyl and benzyl groups, respectively. By changing the mole fraction of the corresponding depsipeptide units, the solubility, thermal transition and degradation behavior of the modified poly(lactic acid) could be varied. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
A series of novel borosiloxane/polybenzoxazine hybrids were synthesized through the copolymerization of 3,3′‐phenylmethanebis(3,4‐dihydro‐2H‐1,3‐benzoxazine) and phenol‐functionalized borosiloxane (BSi‐OH) oligomer. The structures were characterized using nuclear magnetic resonance and fourier transform infrared. The thermal and flame retardant properties of hybrids were investigated by dynamic mechanical analysis, thermogravimetric analysis, and oxygen index instrument. The results showed that the addition of BSi‐OH oligomer is not only highly efficient in environmentally friendly flame retardancy of polybenzoxazine, but also enhances its thermal property. Only 25 wt % content of BSi‐OH oligomer was able to increase the glass transition temperature, 5% weight loss temperature (Td5), 10% weight loss temperature (Td10), and limited oxygen index (LOI) value from original 211 °C, 374 °C, 395 °C, and 29.5 °C to 244 °C, 408 °C, 448 °C, and 40.1, respectively. This work provides a facile and useful method for the preparation of new polybenzoxazines possessing highly efficient and environmentally friendly flame retardance as well as heat resistance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2390–2396  相似文献   

20.
Serine/glycolic acid-based biodegradable polymers have been prepared by ring-opening homopolymerization of 3-(O-benzyl)-L -serinylmorpholine-2,5-dione, and ring-opening copolymerization of the morpholine-2,5-dione derivative and L -lactide/ϵ-caprolactone. The homopolymerization was carried out in the melt at 165°C for 3 min using stannous octanoate as the initiator and continued at lower reaction temperatures (130–150°C) for 48 h, using a molar ratio of monomer and initiator of 1000 yielded a polymer of Mn = 4000. The polymer prepared by homopolymerization of the morpholine-2,5-dione derivative was composed of alternating protected serine and glycolic acid residues. Random copolymers of serine and glycolic acid and L -lactic acid/ϵ-caprolactone were synthesized by copolymerization reaction of 3-(O-benzyl)-L -serinylmorpholine-2,5-dione and lactide or ϵ-caprolactone in the melt at 165°C for 3 min and further reaction at 130°C using stannous octanoate as an initiator. The polymers were deprotected and functionalized through the side chain hydroxyl group of serine residues with an acrylate moiety for applications in injectable drug delivery, cell encapsulation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1901–1907, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号