首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study deals with the structure–property relationship of organoclay (OC) filled nanocomposites based on rubber blend comprising of nitrile‐butadiene rubber (NBR) and phenolic resin (PH). To obtain a better insight into the characteristics of the NBR/PH/OC hybrid system, a simple model system consisting of NBR/OC nanocomposites is also taken into consideration. A series of NBR/OC and NBR/PH/OC nanocomposites containing a wide range of OC concentrations (2.5–30 phr) are prepared by using traditional open two‐roll mill. Structural analysis performed by X‐ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) exhibits mixed exfoliated and intercalated morphology at low OC content, below 7.5 phr, and a well‐ordered intercalated morphology at higher OC loading. It is shown that the dispersion of OC is also influenced by mixing time and order of mixing of components. Analysis of the cure characteristics, mechanical, and thermal properties of both the NBR/OC and NBR/PH/OC nanocomposites reveals that the OC is dispersed mainly in the NBR continuous phase, even though some is likely localized in the rubber–resin interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

3.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

4.
Organoclay nanocomposites were prepared by ultrasound‐assisted solution intercalation technique based on polystyrene containing brominated epoxy and a combination of brominated epoxy and antimony oxide. Aspects of nanomorphology and nanodispersion were investigated by X‐ray diffraction and transmission electron microscopy whereas flammability and reaction to fire were evaluated using limiting oxygen index, UL‐94, and mass loss calorimeter tests. Polystyrene/brominated‐epoxy‐blend‐based nanocomposites showed mixed intercalated–exfoliated nanomorphology where polymer‐intercalated crystallites predominantly exist in polystyrene matrix and exfoliated silicate layers reside on polystyrene/brominated epoxy phase boundaries and within brominated epoxy domains. Organoclay was found to impart a compatibilization effect on polystyrene and dispersed brominated epoxy, which facilitates uniform distribution of a fine flame‐retarding phase within the matrix. With the reduction of the rate at which decomposition products evolve into the gas phase, organoclay nanocomposites showed notable reductions in peak heat release rate and increases in limiting oxygen index. The gas‐phase hot radical entrapment by halogenated flame‐retardant system was coupled with the condensed‐phase physical action of nanodispersed organoclay, which increased the overall fire‐retardant effectiveness. Fire‐retardant mechanisms of nanocomposites based on polystyrene/brominated epoxy blends were attributed to nanoconfinement and tortuous pathway effects of organoclay rather than to carbonaceous char formation proposed earlier for polystyrene/organoclay systems without conventional flame retardants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A series of aromatic thermotropic liquid crystalline copolyester (TLCP) nanocomposites were prepared by the in situ intercalation polymerization of p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), and diacetoxynaphthalene (DAN) isomers in the presence of the organoclay. The DAN isomers used in this study were 2,3‐ and 2,7‐naphthylene. We examined the variation of the liquid crystallinity, morphology, and thermal properties of the nanocomposites with organoclay content in the range 0–10 wt %. All the polymer nanocomposites were fabricated with a molar ratio of ABA:TPA:DAN = 2:1:1; they were shown to consist of a nematic liquid crystalline phase for low organoclay contents (≤5 wt %), whereas the hybrids with a higher concentration of organoclay (≥10 wt %) were found not to be mesomorphic. By using transmission electron microscopy, the clay layers in the 2,3‐DAN copolyester hybrids were found to be better dispersed in the matrix polymer than those in the 2,7‐DAN copolyester hybrids. The introduction of an organoclay into the matrix polymer was found to improve the thermal properties of the 2,3‐DAN copolyester hybrids. However, the thermal properties of the 2,7‐DAN copolyester hybrids were found to be worse than those of the pure matrix polymer for all organoclay compositions tested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 387–397, 2006  相似文献   

6.
Clay–polyimide [3,3′, 4,4′‐benzophenone tetracarboxylic dianhydride–4,4′‐oxydianiline (BTDA–ODA)] nanocomposites were synthesized from ODA‐modified montmorillonite (organoclay) and poly(amic acid). The layered silicates of organoclay were intercalated by polyimide (BTDA–ODA), as confirmed by X‐ray diffraction and by transmission electron microscopy, and the tensile mechanical properties of the nanocomposites were measured. It was found that the modulus and the maximum stress of these organoclay/BTDA–ODA nanocomposites were much higher than those of pure BTDA–ODA: a twofold increase in the modulus and a one‐half‐fold increase in the maximum stress in the case of 7/93 organoclay–BTDA‐ODA. In addition, the elongation‐for‐break of organoclay/BTDA–ODA nanocomposites is even slightly higher than that of pure BTDA–ODA, which is a sharp contrast to that of conventional inorganics‐filled polymer composites. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2873–2878, 2000  相似文献   

7.
Poly methyl methacrylate (PMMA)‐ethylene vinyl acetate (EVA)‐organoclay nanocomposites were prepared with and without in situ crosslinking using tetrapropoxysilane (TPOS) as a crosslinking agent and dibutyl tin oxide (DBTO) as a catalyst. Brabender Plasticorder experimental results suggest that in situ crosslinking transforms the EVA from a liquid to a viscoelastic solid. Transmission electron micrographs analysis indicates that most of the organoclay was clustered in the crosslinked EVA phase. X‐ray diffraction and morphology indicate that the PMMA‐EVA‐organoclay nanocomposites were intercalated and incompatible. Dynamic mechanical analysis (DMA) results indicate some interaction between PMMA‐EVA‐clay nanocomposites. The in situ crosslinked of EVA and the addition of organoclay increased the modulus properties of PMMA. However, in situ crosslinking slightly reduced the barrier properties of PMMA‐EVA‐organoclay nanocomposites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
PP/PP‐g‐MA/MMT/EOR blend nanocomposites were prepared in a twin‐screw extruder at fixed 30 wt % elastomer and 0 to 7 wt % MMT content. Elastomer particle size and shape in the presence of MMT were evaluated at various PP‐g‐MA/organoclay masterbatch ratios of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by maleated polypropylene serves to reduce the size of the elastomer dispersed phase particles and facilitates toughening of these blend nanocomposites. The rheological data analysis using modified Carreau‐Yasuda model showed maximum yield stress in extruder‐made nanocomposites compared with nanocomposites of reactor‐made TPO. Increasing either MMT content or the PP‐g‐MA/organoclay ratio can drive the elastomer particle size below the critical particle size below which toughness is dramatically increased. The ductile‐brittle transition shift toward lower MMT content as the PP‐g‐MA/organoclay ratio is increased. The D‐B transition temperature also decreased with increased MMT content and masterbatch ratio. Elastomer particle sizes below ~1.0 μm did not lead to further decrease in the D‐B transition temperature. The tensile modulus, yield strength, and elongation at yield improved with increasing MMT content and masterbatch ratio while elongation at break was reduced. The modified Mori‐Tanaka model showed better fit to experimental modulus when the effect of MMT and elastomer are considered individually. Overall, extruder‐made nanocomposites showed balanced properties of PP/PP‐g‐MA/MMT/EOR blend nanocomposites compared with nanocomposites of reactor‐made TPO. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

9.
Isobutylene isoprene rubber (IIR)‐clay nanocomposites have been prepared successfully by melt intercalation with maleic anhydride‐grafted IIR (Ma‐g‐IIR) and organophilic clay. In IIR‐clay nanocomposites, the silicate layers of the clay were exfoliated and dispersed into the monolayer. The nanocomposites exhibited greater gas barrier properties compared with those of Ma‐g‐IIR. When 15 phr clay was added, gas barrier properties were 2.5 times greater than those of Ma‐g‐IIR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1182–1188, 2006  相似文献   

10.
Fluorene‐based polyester nanocomposites were prepared by in situ polymerization of equivalent weights of 9,9′‐dihexylfluorene‐2,7‐dicarboxylic acid and 4,4′‐dihydroxy‐1,4‐diphenoxybutane (DPB‐OH) in the presence of octadecyl‐montmorillonite (C18‐MMT) as an organoclay. We investigated the intercalation of the organoclay among the polymer chains, with the aim of improving the thermal properties of the polyester. It was found that the addition of only a small amount of organoclay was enough to improve the polyester's thermal properties. The maximum enhancement of the thermal properties of the fluorene‐based polyester nanocomposites was observed with the dispersion of 5 wt% organoclay. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A new approach was developed to prepare high-performance isobutylene-isoprene rubber/swollen organoclay nanocomposites by shear mixing.Compared with traditional melt compounding method,better dispersion of nanoclay layers in rubber matrix was verified through transmission electron microscopy(TEM) and X-ray diffraction(XRD).The nanocomposites also exhibit significantly improved mechanical properties and gas barrier property.As a mechanism,the molecules of organic swelling agent play a vital role in accelerating the diffusion and intercalation of the matrix molecules.  相似文献   

12.
Summary: This study intends to replace polyethylene multi-layer films used in food packaging industry with single-layer polyethylene nanocomposites films. Nanocomposites of LDPE/LLDPE/ montmorillonite organoclay were prepared by melt compounding in a twin extruder and then film blown to prepare thin films. LLDPE-g-MA was used as compatibilizer to achieve better interaction between the blend and organoclay. Various compositions of organoclay and compatibilizer were prepared. The structure of nanocomposites was characterized by XRD and TEM. Permeability properties were measured using a permeability measuring set-up and aspect ratio of the particles was evaluated using permeability data. The results showed that addition of organoclay even at low level (below 5 phr) had significant effect on barrier properties of the nanocomposites. Oxygen permeability decreased by 50% by adding only 3 phr of nanoclay into the blend. Crystalline structure of the nanocomposites was studied by DSC. Addition of clay also led to increase in melting point and somewhat decrease in the crystalline level. Given the fact that crystals are effectively non-permeable, the concomitant reduction in crystallinity of the blend with decrease in permeability suggests that barrier properties arise from tortuousity of nanoparticles in the blend.  相似文献   

13.
The properties of polypropylene composites can be tailored through the use of nanoclay fillers. The effectiveness of a metallocene‐catalyzed hydroxyl‐functional polypropylene in the compatibilization of polypropylene layered nanosilicate composites was studied, and the results were compared with those for a commercial maleic anhydride functionalized polypropylene. Polypropylene/organoclay nanocomposites were prepared by melt blending, and two polypropylene/compatibilizer/organoclay ratios, 90/5/5 and 70/20/10, were characterized. The organomodification of the clay was carried out with octadecylamine and N‐methylundecenylamine. The structure of the layered silicate was studied by transmission electron microscopy, wide‐angle X‐ray scattering, and small‐angle X‐ray scattering. The fracture surfaces of the composites and thus the efficiency of the compatibilizers to penetrate the galleries of the organoclays were characterized by scanning electron microscopy, and the melt viscosity was studied by stress‐controlled rotational rheometry. The nanostructure was observed with both alkyl amines used for intercalation. The fillers facilitated the processability of all the composites, consisting of equal amounts of compatibilizer and organoclay filler and, in some of the composites, containing twice as much compatibilizer as organoclay filler. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1892–1903, 2005  相似文献   

14.
Polylactide (PLA) is the most extensively reviewed and utilized biodegradable and renewable thermoplastic polyester, with potential to replace conventional petroleum‐based polymeric materials. To improve the toughness of PLA, castor oil‐based polyurethane prepolymer (COPUP) toughened PLA nanocomposites were prepared via the melt mixing process and investigated for its mechanical, thermal and morphological properties. X‐ray diffraction and transmission electron microscopy studies revealed the formation of polymer blend nanocomposites. Mechanical tests revealed optimum performance characteristics at PLA/COPUP ratio of 70:30. Further, loading of the organoclay showed higher tensile strength and modulus of the blend nanocomposites as compared to optimized blend. The morphological results indicated that the surface roughness increases as a function of the organoclay incorporation. Thermogravimetric measurements reveal that the thermal stability of the blend increases with the incorporation of organoclay. The improved mechanical properties along with its biodegradability might lead to new industrial and biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay.  相似文献   

16.
Polyaniline nanofibers and their composites with carbon nanotubes were developed as an effective flame‐retardant material using a facile green method. Polyaniline nanofibers were used as a smart flame‐retardant for acrylonitrile–butadiene–styrene polymer. The polyaniline nanofibers were dispersed in polymer matrix forming well‐dispersed polymer nanocomposites. Effect of polyaniline nanofiber mass ratio on the polymer nanocomposite properties was studied. Polyaniline nanofiber composites with carbon nanotubes were also dispersed in polymer matrix. The thermal stability and flammability properties of the polymer nanocomposites were investigated. The rate of burning of polymer nanocomposites achieved 82.5% reduction (7.32 mm/min) compared with virgin polymer (42.5 mm/min). The reduction in peak heat release rate and total heat release of the polymer nanocomposites containing nanofibers achieved 74 and 34%, respectively. Interestingly, the average mass loss rate was significantly reduced by 58% and the emission of carbon monoxide and carbon dioxide gases were suppressed by 20 and 47%, respectively. The effect of polyaniline nanofibers composites on the flammability of polymer nanocomposites was also studied. Polyaniline nanofibers and their composites were characterized using Fourier transform infrared spectroscopy and transmission and scanning electron microscopy. The dispersion of polyaniline nanofibers in polymer nanocomposites was characterized using transmission electron microscopy. The different polymer nanocomposites were characterized using thermogravimetric analysis, UL94 flame chamber, and cone calorimeter tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Coefficients of linear thermal expansion (CTE) for poly(propylene)/ poly(propylene)‐grafted‐maleic anhydride/montmorillonite ethylene‐co‐octene elastomer (PP/PP‐g‐MA/MMT/EOR) blend nanocomposites were determined as a function of MMT content and various PP‐g‐MA/organoclay masterbatch ratios. The nanocomposites were prepared in a twin‐screw extruder at a fixed 30 wt % elastomer, 0–7 wt % MMT content, and various PP‐g‐MA/organoclay ratio of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by the maleated PP helps to reduce the size of the dispersed phase elastomer particles in the PP matrix. The elastomer particle size decreased significantly as the PP‐g‐MA/organoclay ratio and MMT content increased; the elastomer particles viewed // to flow direction (FD) are smaller and less deformed compared to those viewed // to transverse direction (TD). The elastomer particle shape based on the view along the three orthogonal directions of the injection molded sample is similar to a prolate ellipsoid. The CTE decreased significantly in the FD and TD, whereas a slight increase is observed in the normal direction in the presence of MMT and PP‐g‐MA. The Chow model based on a two population approach showed better fit to experimental CTE when the effect of MMT and elastomer are considered individually. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B Polym. Phys. 2013 , 51, 952–965  相似文献   

18.
Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt‐compounded to form polymer nanocomposites. The rheological properties of the ALD‐created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin‐film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy‐dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt‐compounding was successful, producing well dispersed ribbon‐like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12 wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work‐related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD‐created nanocomposite materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, rheological properties evolution of the simple mixed isotactic polypropylene/organoclay composites, impacted by intermediate- or large-amplitude oscillatory shear fields, was followed by dynamic melt rheometry. The physical meanings of such rheological evolution upon oscillatory shearing, which related closely to the dispersion and intercalation of organoclay in polymer, were discussed deeply. Especially, a structural recovery test was adopted to assess microstructure development induced by large-amplitude oscillatory shear and to better understand the intercalation mechanism. Based on the experimental results, a novel intercalation mechanism that was taken to account for the disentanglement of polymer chains was suggested to describe shear-induced dispersion behaviors of organoclay in polymer matrix.  相似文献   

20.
In current study, a real‐time rheological method was used to investigate the intercalation and exfoliation process of clay in high‐density polyethylene/organoclay (HDPE/OMMT) nanocomposites using maleic anhydride grafted polyethylene (PEgMA) as compatibilizer. To do this, a steady shear was applied to the original nonintercalated or slightly intercalated composites prepared via simple mixing. The moduli of the composites were recorded as a function of time. The effect of matrix molecular weight and the content of compatibilizer on the modulus were studied. The role of the compatibilizer is to enhance the interaction between OMMT and polymer matrix, which facilitates the dispersion, intercalation, and exfoliation of OMMT. The matrix molecular weight determines the melt viscosity and affects the shear stress applied to OMMT platelets. Based on the experimental results, different exfoliation processes of OMMT in composites with different matrix molecular weight were demonstrated. The slippage of OMMT layers is suggested in low‐molecular weight matrix, whereas a gradual intercalation process under shear is suggested in high‐molecular weight matrix. Current study demonstrates that real‐time rheological measurement is an effective way to investigate the dispersion, intercalation, and exfoliation of OMMT as well as the structural change of the matrix. Moreover, it also provides a deep understanding for the role of polymer matrix and compatibilizer in the clay intercalation process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 302–312, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号