首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The plasticized poly(vinyl chloride) (PVC‐P) and its blend with cellulose (PVC‐P/cell) were prepared by means of extrusion. The samples were then biodegraded in forest soil as well as in soil enriched with cellulolytic microorganisms. Moreover, the samples were vaccinated with chosen species of fungi whose direct effect on polymer was then observed. The course of biodegradation was monitored in terms of, and by means of the following: weight loss, carbon dioxide evolved, attenuated total reflectance infrared (FTIR‐ATR) spectroscopy, gel permeation chromatography (GPC), as well as visual and microscopic observation (OM, SEM). The mechanical properties of samples were studied using the standard tensile tests. It was found that biodegradation in soil occurs in PVC‐P and this process is accelerated in the composition of PVC‐P with cellulose. The biodecomposition yield of PVC‐P/cellulose blends (calculated as relative percentage weight loss) is several dozen times higher than that of PVC‐P. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 903–919, 2007  相似文献   

2.
A series of acrylic impact modifiers (AIMs) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle–ductile transition of impact‐modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 °C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle–ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2–341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle–ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle–ductile transition for the PVC/AIM blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 696–702, 2006  相似文献   

3.
Toughening‐modified poly(vinyl chloride) (PVC)/organophilic montmorillonite (OMMT) composites with an impact‐modifier resin (Blendex 338) were prepared by melt intercalation, and their microstructures were investigated with wide‐angle X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. The mechanical properties of the PVC composites were examined in terms of the content of Blendex and OMMT, and the fracture toughness was analyzed with a modified essential work of fracture model. Intercalated structures were found in the PVC/OMMT composites with or without Blendex. Either Blendex or OMMT could improve the elongation at break and notched impact strength of PVC at proper contents. With the addition of 30 phr or more of Blendex, supertough behavior was observed for PVC/Blendex blends, and their notched impact strength was increased more than 3319% compared with that of pristine PVC. Furthermore, the addition of OMMT greatly improved both the toughness and strength of PVC/Blendex blends, and the toughening effect of OMMT on PVC/Blendex blends was much larger than that on pristine PVC. Blendex and OMMT synergistically improved the mechanical properties of PVC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 286–295, 2004  相似文献   

4.
Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two‐step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an isocyanate‐functionalized terpyridine binding unit. The resulting functionalized material contained metal‐ion binding sites, which could be used for grafting and crosslinking reactions. A grafting experiment was performed with a small organic terpyridine ligand. The complexation of the modified PVC with several transition‐metal ions was studied with ultraviolet–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2964–2973, 2003  相似文献   

5.
In this study, tough and high heat‐resistant poly (vinyl chloride) (PVC)/poly (α‐methylstyrene–acrylonitrile) (α‐MSAN) blends (70/30) containing acrylic resin (ACR) as a toughening modifier was prepared. With the addition of ACR, heat distortion temperature increased slightly, which corresponded with the increase in glass transition temperature measured by differential scanning calorimetry and dynamic mechanical thermal analysis. Thermogravimetric analysis showed that addition of ACR improved the thermal stability. With regard to mechanical properties, tough behavior was observed combined with the decrease in tensile strength and flexural strength. A brittle‐ductile transition (BDT) in impact strength was found when ACR content increased from 8 to 10 phr. The impact strength was increased by 34.8 times with the addition of 15 phr ACR. The morphology correlated well with BDT in impact strength. It was also suggested from the morphology that microvoids and shear yielding were the major toughening mechanisms for the ternary blends. Our present study offers insight on the modification of PVC, since combination of α‐MSAN and ACR improves the toughness and heat resistance of pure PVC simultaneously. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The nucleophilic substitution reaction of poly(vinyl chloride) (PVC) with potassium 4‐acetamidothiophenolate was performed in a cyclohexanone solution. The quantitative microstructural analysis, as a function of the conversion, was followed by 13C NMR spectroscopy. Through a comparison of the microstructural changes with the degree of substitution, a small fraction of mmr tetrads was found to react occasionally with the central chlorine of the mr triad instead of the mm, such as for sodium benzenethiolate (NaBT). This conclusion was confirmed by Fourier transform infrared results. However, unlike NaBT, the evolution of the glass‐transition temperature (Tg) with the degree of conversion changed with the degree of substitution similarly to the ratio of the extents to which mmr and rrmr structures intervened in the substitution reaction. From these studies, it followed that the specific interactions due to the polar nature of the nucleophile enhanced the molecular‐microstructure‐based mechanisms, which were responsible for Tg. Such a novel quantitative correlation, compared with more tentative ones obtained previously, presents valuable insight into the role of the stereochemical microstructure in the glass‐transition process in PVC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1857–1867, 2004  相似文献   

7.
Poly(vinyl chloride) (PVC)/bis(2‐ethylhexyl)phthalate (DOP) gels were prepared at room temperature from tetrahydrofuran solutions of PVC and DOP. PVC/DOP gels of different molecular weights at various PVC concentrations (c) were investigated with small‐angle X‐ray scattering (SAXS). The mean distance between two neighboring inhomogeneities (D) and two characteristic lengths, the intrainhomogeneity distance (d1) and interinhomogeneity distance (d2), were evaluated from Bragg's law and the distance distribution function, respectively. Both D and d2 can be expressed by a power‐law relation (e.g., D and d2c?0.5). After a period of rapid cooling to 25 °C from the sol state, the structural evolution was examined with time‐resolved SAXS measurements. An Avrami analysis with the SAXS invariant data revealed that the growth kinetics of PVC/DOP gels was one‐dimensional growth from predetermined nuclei, regardless of c. These results suggest that the PVC/DOP gels are constructed from a fibrillar structure that forms gel structures at high concentrations or low temperatures. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2340–2350, 2001  相似文献   

8.
We evaluated the effects of the solvent composition with respect to the solution concentration, applied electric field, and tip‐to‐collector distance on the morphology of electrospun poly(vinyl chloride) (PVC) fibers. The solvent volume ratio was strongly correlated with the diameter of the electrospun fibers with respect to the other processing parameters. Electrospun PVC fibers dissolved in tetrahydrofuran (THF) had diameters ranging from 500 nm to 6 μm; those dissolved in N,N‐dimethylformamide (DMF) had an average diameter of 200 nm. The diameters of the electrospun fibers were obtained from narrow to broad distributions with the solvent composition. Also, the diameters of fibers electrospun from a mixed solvent of THF and DMF were less than 1 μm. The mechanical properties of electrospun PVC nonwoven mats depended on the fiber orientation and linear velocity of the drum surface. With increasing linear velocity of the drum surface, electrospun PVC fibers were arranged toward the machine direction, and the dimensions of the spiral path were shorter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2259–2268, 2002  相似文献   

9.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   

10.
The chloroiodomethyl chain ends of poly(vinyl chloride) (PVC) obtained by the single‐electron‐transfer/degenerative‐chain‐transfer mediated living radical polymerization of vinyl chloride initiated with iodoform were quantitatively functionalized by the reaction with 2‐allyloxyethanol (CH2?CHCH2OCH2CH2OH). This reaction was performed in dimethyl sulfoxide at 70 °C and was catalyzed by sodium dithionite/sodium bicarbonate. The resulting product is the first example of telechelic PVC [α,ω‐di(hydroxy)PVC]. A possible mechanism for this reaction was suggested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1255–1260, 2005  相似文献   

11.
The tertiary chlorine (Clt) content of vinyl chloride/2‐chloropropene copolymers [P(VC‐co‐2CP)] was determined by NMR spectroscopy. Copolymers containing 6.8–47.0 Clt's per P(VC‐co‐2CP) chain were used to initiate the cationic grafting of α‐methylstyrene, norbornadiene, indene, and norbornene with Et2AlCl under various conditions. Grafting was demonstrated by selective solvent extraction, and the effect of the experimental conditions on the grafting efficiency was examined. Select rheological and thermal characteristics of P(VC‐co‐2CP) grafts, including the glass‐transition temperature, heat deflection temperature, and discoloration upon heating, were studied. P(VC‐co‐2CP) carrying 7–11 poly(α‐methylstyrene) or polynorbornadiene branches per chain raised the glass‐transition temperature to, or above, that of a blend control. P(VC‐co‐2CP)s fitted with polyindene or polynorbornene branches were less effective in raising the mechanical properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3644–3651, 2002  相似文献   

12.
Free‐radical polymerization of vinyl chloride is investigated computationally with special attention to the secondary reactions involving mid‐chain radicals (MCRs). Namely, the rate constants of backbiting, chain scission, chain transfer, and propagation reactions are evaluated using a density functional theory method. The rate coefficients of such reactions are estimated taking into account the position of the radical along the chain as well as its distance from the chain‐end. In particular 1:5, 5:1, and 5:9 backbiting are the most relevant secondary reactions, followed by the slower propagation of MCRs. Finally, a kinetic model of suspension polymerization including the investigated reactions is developed, in order to determine their impact on the quality of the final polymer.

  相似文献   


13.
The diffusion and transport of organic solvents through crosslinked nitrile rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends have been studied. The diffusion of cyclohexanone through these blends was studied with special reference to blend composition, crosslinking systems, fillers, filler loading, and temperature. At room temperature the mechanism of diffusion was found to be Fickian for cyclohexanone–NBR/EVA blend systems. However, a deviation from the Fickian mode of diffusion is observed at higher temperature. The transport coefficients, namely, intrinsic diffusion coefficient (D*), sorption coefficient (S), and permeation coefficient (P) increase with the increase in NBR content. The sorption data have been used to estimate the activation energies for permeation and diffusion. The van't Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. The experimental results were compared with the theoretical predictions. The influence of penetrants transport was studied using dichloromethane, chloroform, and carbon tetrachloride. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1815–1831, 1999  相似文献   

14.
Residual vinyl groups in macroporous monosized polymer particles of poly(meta‐DVB) and poly(para‐DVB) prepared with toluene and 2‐EHA as porogens have been reacted with aluminum chloride as Friedel–Crafts catalyst with and without the presence of lauroyl chloride. In the reaction between aluminum chloride and pendant vinyl groups a post‐crosslinking by cationic polymerization takes place. A reaction occurring simultaneously is the addition of HCl to the double bonds. The progress of these reactions was studied by characterization of vinyl group conversion, pore size distribution, specific surface area, morphology, and swelling behavior. In the reaction with aluminum chloride the poly(para‐DVB) particles showed a substantially higher conversion of pendant vinyl groups than the particles made of poly(meta‐DVB) independent of porogen type. The reaction with aluminum chloride led to a reduced swelling in organic solvents and an increased rigidity of the particles prepared with toluene as porogen. This is confirmed by an increase in the total pore volume in the dry state and a change in the pore size distribution of these particles. Also in the reaction with lauroyl chloride poly(para‐DVB) particles have shown a higher conversion of pendant vinyl groups than poly(meta‐DVB) particles and the acylation was almost complete at the early stage of the reaction. The swelling in organic solvents is reduced as a result of the incorporation of acyl groups into the particles prepared with toluene as porogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1366–1378, 2000  相似文献   

15.
The single‐electron transfer living radical polymerization (SET‐LRP) of vinyl chloride (VC) initiated with CHBr3 in dimethylsulfoxide (DMSO) at 25 °C was investigated using Cu(0) powder and Cu(0) wire as the catalyst. It was determined that living kinetics and high conversion are achieved only through the proper calibration of the ratio between Cu(0) and TREN and the concentration of VC in DMSO. For both Cu(0) powder and Cu(0) wire, optimum conversion was achieved with higher levels of TREN than reported in earlier preliminary reports and under more dilute conditions. Using these conditions, 85+% conversion of VC could be achieved with Cu(0) powder and wire to produce white poly(vinyl chloride) (PVC) with Mn = 20,000 and Mw/Mn = 1.4–1.6 in 360 min. The use of Cu(0) wire provides the most effective catalytic system for the LRP of PVC allowing for simple removal and recycling of the catalyst. In the Cu(0) wire‐catalyzed SET‐LRP of VC, the consumption of Cu(0) was monitored as a function of conversion. From these studies, it is evident that the catalyst can be recycled extensively before significant exchange of Cu(0) into Cu(II)X2 and change in catalyst surface area is observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 164–172, 2010  相似文献   

16.
Copper‐mediated atom transfer radical polymerization (ATRP) is presented as a versatile tool for the graft copolymerization of 2‐ethyl hexylacrylate with poly(vinyl chloride) (PVC) in an aqueous suspension. The appreciable solubility of PVC in 2‐ethyl hexylacrylate (30%) at temperatures around 130 °C makes grafting of the monomer possible from labile chlorines of PVC in aqueous suspensions without the use of additional solvent. The first‐order kinetics (rate constant k = 4.2 × 10?6 s?1) of the mass percentage increase reveals a typical ATRP fashion of the graft copolymerization at low conversions. The use of a completely organosoluble copper(I) complex of hexylated triethylene tetramine, in combination with α‐methylcellulose as a stabilizer, makes the graft copolymerization possible in a dispersed organic phase. Nearly spherical, green particles can be obtained with moderate stirring rates (1000 rpm) in high graft yields. Although the kinetics of the reaction deviates from the first order at high conversions, reasonable graft yields (146%) can be attained within a reaction period of 24 h. In this study, the reaction conditions of the grafting have been studied, and graft products have been confirmed by common techniques such as 1H NMR, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1900–1907, 2006  相似文献   

17.
A poly(vinyl chloride) (PVC) sample was chlorinated in solution in the presence of 2,2′‐azobisisobutyronitrile and by the fluid‐bed method. The aim was to evaluate the scope of the stereoselectivity of the chlorination reaction. The quantitative microstructural analysis of the residual PVC with a degree of chlorination was followed by 13C NMR spectroscopy. From the evolution of the content of isotactic (mm), heterotactic (mr), and syndiotactic (rr) triads and of mmmm, mmmr, and rmmr isotactic pentads in the unchlorinated parts of the polymer, it was unambiguously inferred that the chlorination reaction proceeds by a stereoselective mechanism in that the mr heterotactic triads are the most reactive structures followed by the isotactic triad at mmmr and rmmr pentads. This conclusion was confirmed on the basis of the Fourier transform infrared results. The results provide valuable information regarding the effect of tacticity and related local conformations in the chemical reactions of PVC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 508–519, 2003  相似文献   

18.
In this study, we successfully report an intimate ternary blend system of polycarbonate (PC)/poly(methyl methacrylate) (PMMA)/poly(vinyl acetate) (PVAc) obtained by the simultaneous coalescence of the three guest polymers from their common γ‐cyclodextrin (γ‐CD) inclusion compound (IC). The thermal transitions and the homogeneity of the coalesced ternary blend were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The observation of a single, common glass transition strongly suggests the presence of a homogeneous amorphous phase in the coalesced ternary polymer blend. This was further substantiated by solid‐state 13C NMR observation of the T(1H)s for each of the blend components. For comparison, ternary blends of PC/PMMA/PVAc were also prepared by traditional coprecipitation and solution casting methods. TGA data showed a thermal stability for the coalesced ternary blend that was improved over the coprecipitated blend, which was phase‐segregated. The presence of possible interactions between the three polymer components was investigated by infrared spectroscopy (FTIR). The analysis indicates that the ternary blend of these polymers achieved by coalescence from their common γ‐CD–IC results in a homogeneous polymer blend, possibly with improved properties, whereas coprecipitation and solution cast methods produced phase separated polymer blends. It was also found that control of the component polymer molar ratios plays a key role in the miscibility of their coalesced ternary blends. Coalescence of two or more normally immiscible polymers from their common CD–ICs appears to be a general method for obtaining well‐mixed, intimate blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4182–4194, 2004  相似文献   

19.
α,ω‐di(iodo) poly(isobornyl acrylate) macroiniators (α,ω‐di(iodo)PIA) with number average molecular weight from M n,TriSEC = 11,456 to M n,TriSEC = 94,361 were synthesized by single electron transfer‐degenerative chain transfer mediated living radical polymerization (SET‐DTLRP) of isobornyl acrylate (IA) initiated with iodoform (CHI3) and catalyzed by sodium dithionite (Na2S2O4) in water at 35 °C. The plots of number average molecular weight vs conversion and ln{[M]0/[M]} vs time are linear, indicating a controlled polymerization. α,ω‐di(iodo) poly(isobornyl acrylate) have been used as a macroinitiator for the SET‐DTLRP of vinyl chloride (VCM) leading to high Tg block copolymers PVC‐b‐PIA‐b‐PVC. The dynamic mechanical thermal analysis of the block copolymers suggests just one phase indicating that copolymer behaves as a single material. This technology provides the possibility of synthesizing materials based on PVC with higher Tg in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

20.
Ionic conduction in poly(vinyl chloride) (PVC)‐poly‐1,4‐cis butadiene blends has been studied using the electrical relaxation method. Temperature dependence of direct current (dc) conductivity does not change at the glass transition of PVC but does change at higher temperatures. The shape of the frequency dispersion curve of the electric modulus in a frequency range from 0.01 to 100 Hz depends on temperature. At low temperatures, the shape of the dispersion curve is reproduced by calculation assuming the Debye decay function, whereas this is not reproduced at high temperatures. Two kinds of analysis of the dispersion curve are discussed for this complicated change in the shape of the dispersion. One is that the dispersion curve is regarded as a single process expressed by the Kohlrausch decay function, and the other is that the curve is regarded as two processes expressed by the Debye and the Kohlrausch decay functions. The observed dispersion of the electric modulus is not expressed by the single process but by the two processes. One of the two processes is characterized by the Debye decay function, and the other is characterized by the Kohlrausch decay function. The parameter of the Kohlrausch decay function for one of these processes has a value of 0.82, and this value does not depend on temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 226–235, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号