首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex consisting of one Bi3+ ion and two 2‐mercaptoethanol units (BiME2) was used as initiator for the ring‐opening polymerization of ε‐caprolactone in bulk. A kinetic comparison showed that BiME2 is as reactive as initiator as Sn‐octanoate and more reactive than Bi‐hexanoate. The difference to BiHex3 decreased at higher temperatures and upon addition of an alcohol as coinitiator. When tetra(ethylene glycol) was used as coinitiator, it was completely incorporated into the poly(εCL) chain, so that telechelic polylactones having two OH‐endgroups were formed. In the absence of a coinitiator, 2‐mercaptoethanol or its disulfide were incorporated in the form of ester groups. Furthermore, it was found by MALDI‐TOF mass spectrometry that small amounts of cyclic oligolactones (detected up to a degree of polymerization of 17) were formed under all reaction conditions. Higher temperatures and longer times favored a higher content of cycles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3175–3183, 2006  相似文献   

2.
Coating of silica nanoparticles by biocompatible and biodegradable polymers of ε‐caprolactone and L ‐lactide was performed in situ by ring‐opening polymerization of the cyclic monomers with aluminum, yttrium, and tin alkoxides as catalysts. Hydroxyl groups were introduced on the silica surface by grafting of a prehydrolyzed 3‐glycidoxypropyl trimethoxysilane to initiate a catalytic polymerization in the presence of metal alkoxides. In this manner, free polymer chains were formed to grafted ones, and the graft density was controlled by the nature of the metal and the alcohol‐to‐metal ratio. The grafting reaction was extensively characterized by spectroscopic techniques and quantified. Nanocomposites containing up to 96% of polymer were obtained by this technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1976–1984, 2004  相似文献   

3.
4.
We examined the ring‐opening polymerization of ε‐caprolactone in toluene between 50 and 70 °C, and catalyzed by some Lewis and Brønsted acids to investigate the effects of microwave versus conventional heating on the kinetics and activation thermodynamics of the reaction. The polymerizations proceeded more rapidly when microwave heating, instead of conventional heating, was used to control the temperature. The number‐average molecular weight (Mn) of the polymer could be controlled even when microwave heating was used. To identify which thermodynamic activation constants were responsible for the accelerated polymerizations, we performed the reaction at different temperatures to obtain data for the Arrhenius and Eyring equations. Although the values for the activation energies and the activation enthalpies were larger when microwave heating rather than conventional heating was used, the frequency factors and the activation entropies (ΔS?) over compensated for the less favorable activation energies and enthalpies. The more favorable ΔG? found for the microwave‐assisted polymerizations mainly reflect the larger ΔS? values, and the rate accelerations appear to be a consequence of differently arranged intermediates and/or transition states. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3732–3739  相似文献   

5.
A series of zinc silylamido complexes bearing non‐symmetric β ‐diketiminate ligands were synthesized and structurally characterized. Ring‐opening polymerization (ROP) of rac ‐lactide catalyzed by these zinc complexes afforded heterotactic polylactides at room temperature (P r = 0.79 ~ 0.83 in THF). The steric and electronic characteristics of the ancillary ligands showed significant influence on the polymerization performance of the corresponding zinc complexes. All these zinc complexes also showed moderate activities toward the polymerization of ε ‐caprolactone at ambient temperature in toluene, producing polycaprolactones (PCLs) with high molecular weights and moderate polydispersities. PCL‐b ‐PLLA copolymers could be obtained via three different copolymerization strategies (one‐pot polymerization, and sequential addition of the two monomers in either order) by adopting complex 6 as the initiator through the adjustment of reaction temperatures. The diblock nature of the copolymers was confirmed by 13C NMR spectroscopy and DSC analysis.  相似文献   

6.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

7.
In this work, ring opening insertion polymerization (ROIP) of ε‐caprolactone (ε‐CL) using a series of hydrogen phosphonates (H‐phosphonates) as initiators was investigated. The ROIP occurred by a coordination‐insertion mechanism containing two steps. First, the carbonyl carbon was attacked by the phosphorus atom of the H‐phosphonate tautomerization (a phosphine‐like structure) and the acyl‐oxygen bond was broken. An intermediate was formed by the coordination of the former carbonyl carbon and acyl‐oxygen of ε‐CL to phosphorus atom. Then the phosphorus‐alkoxide of H‐phosphonate was cleavaged to form acyl‐alkoxide bond. Poly(ε‐caprolactone) (PCL)‐inserted H‐phosphonates (PCL‐HPs), which was not only the product of the occurred ROIP but also the initiator for the next ROIP, were produced. After 60 min of microwave irradiation (510 W), PCL with a number‐average molar mass of 7800 g/mol and monomer conversion over 92% was obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6214–6222, 2009  相似文献   

8.
Lanthanide tris ( 2,6-dimethylphenolate ) s [ Ln ( ODMP)3 ] were used as iniliators for ring-opening polymerization of e-caprolac-tone (CL) for the first time. The influence of different rare earth elements and solvents was investigated. ^1H NMR spectral data of polycaprolactone (PCL) obtained showed that the poly-merization mechanism is in agreement with the coordination-in-sertion mechanism and the selective cleavage of the acyl-oxygen bond of CL.  相似文献   

9.
A novel process for synthesizing nylon‐6 and poly(?‐caprolactone) by microwave irradiation of the respective monomers, ?‐caprolactam and ?‐caprolactone, is described. The ring opening of ?‐caprolactam to produce nylon‐6 was performed in a microwave oven by the forward power being controlled to about 90–135 W in the presence of an ω‐aminocaproic acid catalyst (10 mol %) and for periods of 1–3 h at temperatures varying from 250 to 280 °C. The ring opening of ?‐caprolactone to produce poly(?‐caprolactone) was performed in a microwave oven by the forward power being controlled to about 70–100 W for a period of 2 h in the presence of stannous octoate with and without 1,4‐butanediol over a temperature range of 150–200 °C. The yields, conditions of the reactions, and properties of the products generated relative to the thermal processes are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2264–2275, 2002  相似文献   

10.
End‐functionalized polyesters have been synthesized by ring‐opening polymerization (ROP) of ?‐caprolactone (CL) initiated with five different ruthenium derivatives in the presence of a series of alcohols as transfer agents. Mechanistic studies were performed for ROP of CL with RuCl2(PPh3)3 ( I ), TpRuCl(PPh3)2 ( II ), and TpRuCl(PHPh2)(PPh3) ( III ) as catalysts in the presence or absence of benzyl alcohol (BzOH). Obtained molecular weights are proportional to CL/BzOH ratio, but there is not a direct relationship with CL/ruthenium complex ratios. 1H and 13C NMR spectroscopy revealed the existence of benzyl ester end‐groups. Catalysis involves (a) dissociation of ruthenium complexes, (b) coordination of the lactone CL, (c) coordination of the BzOH with the formation of a metal alkoxide, (d) transfer from the alkoxyl ligand to the coordinated lactone, and (e) ring‐opening of CL by oxygen‐acyl bond cleavage. The proposed mechanism is supported by 1H, 13C, and 31P NMR, gel permeation chromatography (GPC), and MALDI‐TOF analysis of the polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6926–6942, 2006  相似文献   

11.
A series of copolymers containing ε‐caprolactone (CL) and 4‐methyl‐ε‐caprolactone (MeCL) were synthesized by ring‐opening polymerization (ROP) using Tin(II) bis(2‐ethylhexanoate)(Sn(Oct)2) or Novozym 435 as catalyst. The molecular structure and weight of copolymers were determined by nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC), respectively. Our kinetic study showed that the monomer reactivity ratios for CL (r1) and MeCL (r2) using Sn(Oct)2 as catalyst were estimated to be near unity and r1 × r2 = 1, indicating the random distribution of the monomers in the final copolymer. The results of DSC and XRD consistently indicated that the copolymers were inclined to be amorphous with the increasing of MeCL fraction. Microspheres were prepared from copolymers and characterized by SEM. The preliminary degradability and biocompatibility studies on these copolymers were also assessed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Two novel sulfonate phenol ligands—3,3′‐di‐tert‐butyl‐2′‐hydroxy‐5,5′,6,6′‐tetramethyl‐biphenyl‐2‐yl 4‐X‐benzenesulfonate (X?CF3, LCF3 ‐H, and X?OCH3, LOMe ‐H)—were prepared through the sulfonylation of 3,3′‐di‐tert‐butyl‐5,5′,6,6′‐tetramethylbiphenyl‐2,2′‐diol with the corresponding 4‐substituted benzenesulfonyl chloride (1 equiv.) in the presence of excess triethylamine. Magnesium (Mg) complexes supported by sulfonate phenoxide ligands were synthesized and characterized structurally. The reaction of MgnBu2 with L‐H (2 equiv.) produces the four‐coordinated monomeric complexes ( LCF3 )2Mg ( 1 ) and ( LOMe )2Mg ( 2 ). Complexes 1 and 2 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and trimethylene carbonate (TMC) in the presence of 9‐anthracenemethanol; complex 1 catalyzes the polymerization of ε‐CL and TMC in a controlled manner, yielding polymers with the expected molecular weights and narrow polydispersity indices (PDIs). In ε‐CL polymerization, the activity of complex 1 is greater than that of complex 2 , likely because of the greater Lewis acidity of Mg2+ metal caused by the electron‐withdrawing substitute trifluoromethyl (? CF3) at the 4‐position of the benzenesulfonate group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3564–3572, 2010  相似文献   

13.
Homoleptic lanthanide metallocenes Cp′3Ln [Cp′ = methylcyclopentadienyl, Ln = Y ( 1 ), Er ( 2 ), Sm ( 3 ); Cp′ = cyclopentadienyl, Ln = Er ( 4 ) and Sm ( 5 )] have been found to be a novel type of initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL). Among them, complex 1 shows the highest catalytic activity for ROP of ε‐CL. In addition, a novel neutral trifluoroethoxo yttrium complex [(MeC5H4)2Y(µ‐OCH2CF3)]2 ( 6 ) has been synthesized by the reaction of 1 with trifluoroethanol in 1:1 molar ratio in toluene and characterized by single‐crystal X‐ray structural analysis. Preliminary study shows that the catalytic activity of tris(methylcyclopentadienyl)yttrium complex 1 is higher than that of bis(methylcyclopentadienyl)yttrium complex 6 . The mechanism of the present polymerization was studied by NMR spectra. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

15.
Ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using salicylic acid (SAA) as the organocatalyst and benzyl alcohol as the initiator in bulk at 80 °C successfully proceeded to give a narrowly distributed poly(ε‐caprolactone) (PCL). In addition, 2‐hydroxyethyl methacrylate, propargyl alcohol, 6‐azido‐1‐hexanol, and methoxy poly(ethylene glycol) were also used as functional initiators. The 1H NMR, SEC, and MALDI‐TOF MS measurements of the PCL clearly indicate the presence of the initiator residue at the chain end, implying that the SAA‐catalyzed ROP of CL was through the activated monomer mechanism. The kinetic experiments confirmed the controlled/living nature of the SAA‐catalyzed ROP of CL. Furthermore, the block copolymerization of CL and δ‐valerolactone successfully proceeded to give poly(ε‐caprolactone)‐block‐poly(δ‐valerolactone). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1185–1192  相似文献   

16.
The graft polymerization of ε‐caprolactone (ε‐CL) onto magnetite was carried out under microwave irradiation in the presence of tin(II) 2‐ethylhexanoate. The molar ratio of ε‐CL to tin(II) 2‐ethylhexanoate was 300, whereas the molar ratio of ε‐CL to magnetite was 5. The chemical structures of the obtained poly(ε‐caprolactone) coated magnetic nanoparticles were characterized by FTIR and XPS spectroscopy. These magnetic‐polymer hybrid nanostructures were further investigated by X‐ray diffraction and magnetization measurements. The morphology of the magnetic core‐shell nanostructures were determined by TEM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5397–5404, 2009  相似文献   

17.
A series of efficient zinc catalysts supported by sterically bulky benzotriazole phenoxide ( BTP ) ligands are synthesized and structurally characterized. The reactions of diethyl zinc (ZnEt2) with CMe2PhBTP ‐H, t‐BuBTP ‐H, and TMClBTP ‐H yield monoadduct [(μ‐ BTP )ZnEt]2 ( 1 – 3 ), respectively. Bisadduct complex [( t‐BuBTP )2Zn] ( 4 ) results from treatment of ZnEt2 with t‐BuBTP ‐H (2 equiv.) in toluene, but treatment of TMClBTP ‐H with ZnEt2 in the same stoichiometric proportion in Et2O produces five‐coordinated monomeric complex [( TMClBTP )2Zn(Et2O)] ( 5 ). The molecular structures of compounds 1 , 4 , and 5 are characterized by X‐ray crystal structure determinations. All complexes 1 – 5 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) in the presence of 9‐anthracenemethanol. Experimental results indicate that complex 3 exhibits the greatest activity with well‐controlled character among these complexes. The polymerizations of ε‐CL and β‐butyrolactone catalyzed by 3 are demonstrated in a “living” character with narrow polydispersity indices (monomer‐to‐initiator ratio in the range of 25–200, PDIs ≤ 1.10). The “immortal” character of 3 provides a way to synthesize as much as 16‐fold polymer chains of poly(ε‐CL) (PCL) with narrow PDI in the presence of a catalyst in a small proportion. The controlled fashion of complex 3 also enabled preparation of the PCL‐b‐poly(3‐hydroxybutyrate) copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
γ‐Acryloyloxyethyl‐γ‐butyrolactone is formed as a byproduct when the polymerization of γ‐acryloyloxy‐ε‐caprolactone is initiated with aluminium isopropoxide in toluene. The extent of this side reaction decreases with decreasing temperature and is dependent on whether the reaction is stopped as soon as monomer conversion is complete or not. A two‐step backbiting mechanism is proposed for this intramolecular transesterification reaction.  相似文献   

19.
PCL/clay nanocomposites were prepared by microwave‐assisted in situ ROP of ε‐caprolactone in the presence of either unmodified clay (Cloisite® Na+) or clay modified by quaternary ammonium cations containing hydroxyl groups (Cloisite 30B). This PCL showed significantly improved monomer conversion and molecular weight compared with that produced by conventional heating. An intercalated structure was observed for the PCL/Cloisite Na+ nanocomposites, while a predominantly exfoliated structure was observed for the PCL/Cloisite 30B nanocomposites. Microwave irradiation proved to be an effective and efficient method for the preparation of PCL/clay nanocomposites.

  相似文献   


20.
A novel tridentate anilido‐aldimine ligand, [o‐C6H4(NHAr)? HC?NCH2CH2NMe2] (Ar = 2,6‐iPr2C6H3, L ‐H, 1 ), has been prepared by the condensation of N, N‐dimethylethylenediamine with one molar equivalent of 2‐fluoro‐benzaldehyde in hexane, followed by the addition of the lithium salt of diisopropylaniline in THF. Magnesium (Mg) and zinc (Zn) complexes supported by the tridentate anilido‐aldimine ligand have been synthesized and structurally characterized. Reaction of L ‐H ( 1 ) with an equivalent amount of MgnBu2 or ZnEt2 produces the monomeric complex [ L MgnBu] ( 2 ) or [ L ZnEt] ( 3 ), respectively. Experimental results show that complexes 2 and 3 are efficient catalysts for ring‐opening polymerization of ε‐caprolactone (CL) and L ‐lactide (LA) in the presence of benzyl alcohol and catalyze the polymerization of ε‐CL and L ‐LA in a controlled fashion yielding polymers with a narrow polydispersity index. In both polymerizations, the activity of Mg complex 2 is higher than that of Zn complex 3 , which is probably due to the higher Lewis acidity and better oxophilic nature of Mg2+ metal. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4927–4936, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号