首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(L ‐lactide) (PLLA)/poly(butylene succinate‐co‐butylene adipate) (PBSA) blends were compounded with Cloisite 25A® (C25A) and C25A functionalized with epoxy groups, respectively. Epoxy groups on the surface of C25A were introduced by treating C25A with (glycidoxypropyl)trimethoxy silane (GPS) to produce so called Twice Functionalized Organoclay (TFC). Variation of morphology and properties of PLLA/PBSA/C25A composites was investigated before and after the treatment with GPS. The morphological structure of the composites was analyzed by using X‐ray diffractometry (XRD) and transmission electron microscopy (TEM). The silicate layers of PLLA/PBSA/TFC were exfoliated to a larger extent than PLLA/PBSA/C25A. Incorporation of the epoxy groups on C25A improved significantly elongation at break as well as tensile modulus and tensile strength of PLLA/PBSA/C25A. The larger amount of exfoliation of the silicate layers in PLLA/PBSA/TFC as compared with that in PLLA/PBSA/C25A was attributed to the increased interfacial interaction between the polyesters and the clay due to chemical reaction. Thermo gravimetric analysis revealed that both T5%, which was the temperature corresponding to 5% weight loss, and activation energy of thermal decomposition of PLLA/PBSA/TFC were far superior to those of PLLA/PBSA/C25A as well as to those of PLLA/PBSA, indicating that the composites with exfoliated silicate layers were more thermally stable than those with intercalated silicate layers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 478–487, 2005  相似文献   

2.
Phenyl side chains were introduced to poly(butylene succinate) and poly(ethylene adipate) by the polymerization of the respective monomers in the presence of mandelic acid. The increasing content of the phenyl side chains decreased the melting temperature and the crystallinity but increased the glass‐transition temperature of the aliphatic polyesters. The phenyl side branches reduced the crystallinity of poly(butylene succinate) more significantly than the ethyl or n‐octyl side branches did. The tensile strength, elongation, and tear strength of poly(ethylene adipate) decreased with an increase in the content of mandelic acid units. However, the increasing content of mandelic acid units enhanced the elongation and tear strength of poly(butylene succinate) considerably without a notable deterioration of tensile strength. The biodegradability of the copolyesters was increased as a result of the introduction of more mandelic acid units due to the decrease in the crystallinity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1504–1511, 2000  相似文献   

3.
The poly (butylene succinate‐co‐butylene adipate) (PBSA)/thiodiphenol (TDP) complexes were prepared by melt blending. Intermolecular hydrogen bonding between carbonyl group of PBSA and hydroxyl group of TDP formed as verified by a combination FTIR and peak fitting technique. As a result, the crystallization temperature, melting temperature, crystallinity and crystallization rate of PBSA decreased with addition of TDP, implying impeded crystallization and reduced lamellar thickness. On the basis of Lauritzen–Hoffman analysis, the fold surface energy (σe) and work of chain folding (q) were increased by TDP incorporation. POM observation exhibited concentric ring‐banded spherulites for samples with 10 and 20 wt% TDP. A peculiar ring‐banded pattern with discrepant band spacing was obtained for the first time by addition of 30 wt% TDP, whose formation mechanism remains to be discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Biodegradable polyesters, poly(butylene succinate adipate) (PBSA), poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), poly(butylene succinate)/poly(caprolactone) blend (HB02B) and poly(butylene adipate terephthalate) (PBAT), were evaluated about degradability for enzymatic degradation by lipases and chemical degradation in sodium hydroxide solution. In enzymatic degradation, PBSA was the most degradable by lipase PS, on the other hand, PBAT containing aromatic ring was little degraded by eleven kinds of lipases. In 1N NaOH solution, degradation rate of PES with ethylene unit was extremely fast, in comparison with other polyesters. Interestingly the degradation rate of PBSA in enzymatic degradation by lipase PS was faster than in chemical degradation.  相似文献   

5.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Aliphatic dicarboxylic acid/aliphatic diol‐derived polyesters, poly(butylene succinate) and poly(butylene succinate/adipate), have been hydrolytically degraded in the melt in high‐temperature and high‐pressure water over a wide temperature range of 180–300 °C for periods of up to 30 min. The formation/decomposition of succinic acid (SA), adipic acid (AA), and butane‐1,4‐diol (BD), plus the molecular weight change of PBS and PBSA were then investigated. SA and AA were recovered at maximum yields of 65–80%, whereas BD was recovered at a maximum yield of only 30%, probably because of its decomposition. The obtained results were compared with those reported for aliphatic hydroxycarboxylic acid‐derived polyesters and aromatic dicarboxylic acid/aliphatic diol‐derived polyesters.

  相似文献   


7.
In order to modify the properties of poly(butylene succinate), poly(diethylene glycol succinate) (PDGS) segment was incorporated by chain‐extension reaction of dihydroxyl‐terminated PBS and PDGS precursors using hexamethylene diisocyanate as a chain extender to form PBS‐b‐PDGS multiblock copolymers. The chemical structure and basic physical properties of the multiblock copolyesters were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and tensile testing. The results suggested that the incorporation of PDGS segments would increase the elongation at break of PBS significantly while decrease its melting temperature and crystallization temperature slightly. The isothermal crystallization kinetics studied by DSC and polarized optical microscopy indicated that the crystallization rate of the multiblock polymers decreased gradually with increasing PDGS segment content while the crystallization mechanism kept unchanged and the spherulitic growth rate of the multiblock copolymers decreased gradually with increase in PDGS content due to its diluent effect to the crystallization of PBS segments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

9.
The melting behavior of poly(butylene succinate‐co‐adipate) (PBSA) isothermally crystallized from the melt was investigated by differential scanning calorimetry. Triple, double, or single melting endotherms were observed in subsequent heating scan for the samples isothermally crystallized at different temperatures. These endothermic peaks were labeled as I, II, and III for low‐, middle‐, and high‐temperature melting endotherms, respectively. The independence of endotherm III to the crystallization temperature, the existence of an exothermic crystallization peak just below the endotherm III, and the heating rate dependence of endotherm III indicated that endotherm III was due to the remelting of recrystallized lamellar during a heating scan. The influence of crystallization time on the melting behavior of PBSA showed that endotherms II and III developed prior to endotherm I; endotherm III developed rather simultaneously with endotherm II. Further investigation showed that the peak temperature of endotherm I increased linearly with the logarithm of the crystallization time. It suggested that endotherm II was attributed to the melting of the primary lamellae, while endotherm I was due to the melting of secondary lamellae. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3077–3082, 2005  相似文献   

10.
The effects of replacing poly(butylene succinate adipate) (PBSA) with acrylic acid‐grafted PBSA (PBSA‐g‐AA) on the structure and the properties of a PBSA/chitosan composite were investigated. The properties of both PBSA‐g‐AA/chitosan and PBSA/chitosan were compared using Fourier transform infrared (FTIR), 13C nuclear magnetic resonance (NMR), X‐ray diffraction (XRD), and an antibacterial activity test. With PBSA‐g‐AA in the composite, the compatibility with chitosan and, consequently, the properties of the composite became greatly improved due to the formation of ester and imide groups that conferred better dispersion and homogeneity of chitosan in the matrix. Composites containing PBSA‐g‐AA/chitosan exhibited superior mechanical properties due to greater compatibility between the two components. Moreover, chitosan enhanced the antibacterial activity of the composites. Composites of PBSA‐g‐AA or PBSA that contain chitosan have better antibacterial activity. The functionalized PBSA‐g‐AA/chitosan composites showed markedly enhanced antibacterial properties due to the carboxyl groups of acrylic acid, which acted as coordination sites for the chitosan phase, allowing the formation of stronger chemical bonds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Unsaturated groups were introduced into the main chains of poly(butylene succinate) (PBS) by the condensation polymerization of 1,4‐butanediol with succinic acid and maleic acid (MA). The resulting aliphatic polyesters were subjected to chain extension via the unsaturated groups with benzoyl peroxide (BPO), BPO/ethylene glycol dimethacrylate (DF), or BPO/triallyl cyanurate (TF). During the condensation polymerization, some of the cis‐structured maleate was isomerized into the trans‐structured fumarate. The trans‐structured fumarate participated in the chain‐extension reaction with BPO more than the cis‐structured maleate. However, the trans/cis ratio remained practically unchanged when bridging molecules such as DF and TF were used along with BPO. Chain extension of PBS containing 5.7 mol % MA units (PBSM57) resulted in gel formation. Chain extension with BPO/TF made more gels in PBSM57 than chain extension with the other crosslinking agents. Chain extension increased the glass‐transition temperature, decreased the melting temperature and crystallinity, and improved mechanical properties such as elongation and tensile strength. The results of the modified Sturm tests showed that the biodegradability of the unsaturated aliphatic polyesters decreased greatly because of the chain extension. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2240–2246, 2000  相似文献   

12.
Using the organic compound 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) as a catalyst for step‐growth polymerization, a series of well‐defined hydroxyl‐telechelic renewable aliphatic polyesters (including poly(1,3‐propylene adipate); poly(1,4‐butylene adipate); poly(1,12‐dodecylene sebacate); and poly(1,2‐dimethylethylene adipate), PDMEA) were synthesized and studied. PDMEA is a novel polyester, which has not been reported before. The results of 1H NMR and Matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry indicate that the polymers are fully hydroxyl terminated. From differential scanning calorimetry (DSC) thermograms, we found that the glass transition temperatures (Tg) of these polyesters are below ?20 °C. Only a Tg but no melting peak is observed in the DSC curve of the novel PDMEA. This indicates that PDMEA, contrary to the other renewable polyesters, is totally amorphous. Furthermore, using hexamethylene diisocyanate and hexamethylene diamine, poly(ester urethane urea)s (PEUUs) based on PDMEA were successfully synthesized. The Tg of the prepared PEUUs is below 0 °C, and no melting behavior of the soft‐segment is observed. The PEUU, with a flow temperature of over 200 °C, thus behaves as an elastomer at room temperature. Its mechanical properties, such as a relatively low tensile E‐modulus (≈20 MPa) at room temperature and a sufficiently high strain at break (≈560%), make it suitable for use in, for example, biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Block copolymers demonstrate excellent thermal and mechanical properties superior to their corresponding random copolymers and homopolymers. However, it is difficult to synthesize block copolymers comprising of different polyester segments by copolycondensation due to the serious transesterification reaction. In this study, multiblock copolymers comprising of two different polyester segments, i.e. crystallizable poly(butylene succinate) (PBS) and amorphous poly(1,2‐propylene succinate) (PPSu), were synthesized by chain‐extension with hexamethylene diisocyanate (HDI). Amorphous PPSu segment was incorporated to improve the impact strength of PBS. The copolymers were characterized by GPC, laser light scattering (LLS), NMR, DSC, and mechanical testing. The results of 13C NMR spectra suggest that multiblock copolymers with regular sequential structure have been successfully synthesized. The data of DSC and mechanical testing indicate that block copolymers possess excellent thermal and mechanical properties with satisfactory tensile strength and extraordinary impact strength achieving upto 1900% of pure PBS. The influence of PPSu ratio and chain length of both the segments on the thermal and mechanical properties was investigated. The incorporation of an amorphous soft segment PPSu imparts high‐impact resistance to the copolymers without obviously decreasing the melting point (Tm). The favorable mechanical and thermal properties of the copolymers also depend on their regular sequential structure. At the same time, the introduction of amorphous PPSu segment enhances the enzymatic degradation rate of the multiblock copolymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This article presents the synthesis of a new family of synthetic isotactic polyesters derived from poly((S)‐3,3‐dimethylmalic acid) (PDMMLA). These polyesters are prepared via the lactone route bearing functionalized groups in its main or side chain. The aim of this work is twofold: metabolism and stereochemistry. First, the synthesis of these new polyesters is chosen to provide biodegradable polyesters biocompatible and bioassimilable by the human body. Next, the molecular chain of this family contains a stereogenic center in the aim to provide 100% isotactic homopolymers and copolymers (statistical and block). Finally, these polymers have been characterized by several analytical techniques: FTIR, 1H and 13C NMR, SEC, DSC, and TGA. The greatest importance will be given to the 13C NMR and DSC to principally confirm the stereoregularity and crystallinity of these stereopolyesters. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1495–1507  相似文献   

15.
Melt‐processable liquid‐crystalline terpolyesters of 4‐hydroxyphenylacetic acid (HPAA) and 3‐(4‐hydroxyphenyl)propionic acid (HPPA) with terephthalic acid and 2,6‐naphthalene diol were synthesized by one‐step acidolysis melt polycondensation followed by postpolymerization and were characterized with viscosity studies, Fourier transform infrared (FTIR) and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy, and wide‐angle X‐ray diffraction. The melting behaviors and liquid‐crystalline transition temperatures of the terpolyesters were dependent on the composition of the HPAA/HPPA content. The transition temperatures of the polyesters could be effectively reduced by the introduction of an even number of built‐in short methylene spacers in combination with the 2,6‐naphthalene offset structure. A terpolyester with an HPPA content of 33% (NTP33) showed optimum properties for the glass‐transition temperature, around 71 °C, and the melting temperature, near 240 °C, with a Schlieren nematic texture. The polymer showed excellent flow behavior in a Brabender plasticorder. It was also thermally stable up to 400 °C. NTP33 showed 2.5% in vitro hydrolytic degradation in buffer solutions of pH 10 at 60 °C after 540 h. Considerable enzymatic degradation was also observed with porcine pancreas lipase/buffer solutions in comparison with Candida rugosa lipase after 60 days. The degradation was also followed with FTIR, DSC, and TGA. Apart from the temperature and pH of the buffer solution, several structural parameters, such as the aromatic content, crystallinity percentage, and composition of the polymer, affected the degradation behavior. FTIR studies indicated the involvement of chain scission during degradation. Scanning electron microscopy studies further showed that surface erosion also played a major role in the degradation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1845–1857, 2002  相似文献   

16.
Poly(butylene succinate) (PBSu) and two poly(butylene succinate‐co‐propylene succinate)s were synthesized via the direct polycondensation reaction. The copolyesters were characterized as having 7.0.and 11.5 mol % propylene succinate (PS) units, respectively, by 1H NMR. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) adopted to study the nonisothermal crystallization of these polyesters at a cooling rate of 1, 2, 3, 5, 6, and 10 °C/min. Morphology and the isothermal growth rates of spherulites under PLM experiments were monitored and obtained by curve‐fitting. These continuous rate data were analyzed with the Lauritzen?Hoffman equation. A transition of regime II → III was found at 95.6, 84.4, and 77.3 °C for PBSu, PBPSu 95/5, and PBPSu 90/10, respectively. DSC exothermic curves show that all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Ozawa, Mo, Friedman, and Vyazovkin equations. All the results of PLM and DSC measurements indicate that incorporation of minor PS units into PBSu markedly inhibits the crystallization of the resulting polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1299–1308, 2010  相似文献   

17.
Poly(butylene succinate-co-butylene adipate) was obtained from 1,4-butanediol and dimethyl esters of succinic and adipic acids through a two step process of transesterification and polycondensation. High molecular weight polyesters were synthesized using hexamethylene diisocyanate as chain extender. The effect of chain extension reaction time and chain extender content on polyester molecular weight, thermal and mechanical properties, was investigated. Polyesters were characterized by means of nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and mechanical property measurements. Chain extension reaction had as a result the significant increase of polyester molecular weight leading to increased tensile strength. Polyester crystallinity, as calculated from XRD and DSC analysis, and melting temperature decreased upon chain extension, while glass transition temperature increased. Polyester biodegradation was investigated by soil burial and enzymatic hydrolysis using the enzyme Pseudomonas fluorescens cholesterol esterase. It appears that biodegradation was affected by polyester crystallinity, rather than by its molecular weight.  相似文献   

18.
Rare earth (Nd, Y, La, Dy) stearates have been synthesized and used as single component catalysts for the polycondensation of dimethyl terephthalate, adipic acid and 1,4-butanediol for the first time preparing biodegradable poly(butylene adipate-co-terephthalate) (PBAT) with high molecular weight, The microstructures of PBAT were characterized by ^1H NMR spectra. The PBAT exhibits good mechanical properties such as high tensile strength (ca. 20 MPa) and long break elongation (〉700%).  相似文献   

19.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

20.
Poly(butylene naphthalate) (PBN), poly(diethylene naphthalate) (PDEN), and poly(thiodiethylene naphthalate) (PTDEN) were synthesized and characterized in terms of chemical structure and molecular weight. The polyesters were examined by TGA, DSC, and DMTA. All the polymers showed a good thermal stability, even though depending on chemical structure. At room temperature they appeared as semicrystalline materials; the effect of the introduction along the PBN polymer chain of ether oxygen atoms or sulfur ones was a lowering in the Tg value, a decrement of Tm, and a decrease of the crystallization rate. Changing in chemical structure also affects the main α absorption associated with the glass transition which moves to lower temperature and whose energetic requirements decrease. The results were explained as due to the presence of highly flexible C? S? C or C? O? C bonds in the polymeric chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1694–1703, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号