首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In this study, a novel type of amphiphilic block copolymers poly(lactic acid)‐block‐poly(ascorbyl acrylate) (PLA‐block‐PAAA) with biodegradable poly(lactic acid) as hydrophobic block and poly(ascorbyl acrylate) (PAAA) as hydrophilic block was successfully developed by a combination of ring‐opening polymerization and atom transfer radical polymerization, followed by hydrogenation under normal pressure. The chemical structures of the desired copolymers were characterized by 1H NMR and gel permeation chromatography. The thermal physical properties and crystallinity were investigated by thermogravimetric analysis, differential scanning calorimetry, and wide angle X‐ray diffraction, respectively. Their self‐assembly behavior was monitored by fluorescence‐probe technique and turbidity change using UV–vis spectrometer, and the morphology and size of the nanocarriers via self‐assembly were detected by cryo‐transmission electron microscopy and dynamic light scattering. These polymeric micelles with PAAA shell extending into the aqueous solution have potential abilities to act as promising nanovehicles for targeting drug delivery. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The spontaneous hydrogel formation of a sort of biocompatible and biodegradable amphiphilic block copolymer in water was observed, and the underlying gelling mechanism was assumed. A series of ABA‐type triblock copolymers [poly(D,L ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(D,L ‐lactic acid‐co‐glycolic acid)] and different derivatives end‐capped by small alkyl groups were synthesized, and the aqueous phase behaviors of these samples were studied. The virgin triblock copolymers and most of the derivatives exhibited a temperature‐dependent reversible sol–gel transition in water. Both the poly(D,L ‐lactic acid‐co‐glycolic acid) length and end group were found to significantly tune the gel windows in the phase diagrams, but with different behaviors. The critical micelle concentrations were much lower than the associated critical gel concentrations, and an intact micellar structure remained after gelation. A combination of various measurement techniques confirmed that the sol–gel transition with an increase in the temperature was induced not simply via the self‐assembly of amphiphilic polymer chains but also via the further hydrophobic aggregation of micelles resulting in a micelle network due to a large‐scale self‐assembly. The coarsening of the micelle network was further suggested to account for the transition from a transparent gel to an opaque gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1122–1133, 2007  相似文献   

3.
A novel biodegradable amphiphilic copolymer with hydrophobic poly(ε‐caprolactone) branches containing cholic acid moiety and a hydrophilic poly(ethylene glycol) chain was synthesized. The copolymer was characterized by FTIR, 1H NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) analysis. The amphiphilic copolymer could self‐assemble into micelles in an aqueous solution. The critical micelle concentration of the amphiphilic copolymer was determined by fluorescence spectroscopy. A nanoparticle drug delivery system with a regularly spherical shape was prepared with high encapsulation efficiency. The in vitro drug release from the drug‐loaded polymeric nanoparticles was investigated. Because of the branched structure of the hydrophobic part of the copolymer and the relatively fast degradation rate of the copolymer, an improved release behavior was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5256–5265, 2007  相似文献   

4.
The synthesis of low‐molecular‐weight (weight‐average molecular weight < 45,000 g/mol) lactic acid polymers through the dehydropolycondensation of L ‐lactic acid was investigated. Polymerizations were carried out in solution with solvents (xylene, mesitylene, and decalin), without a solvent using different Lewis acid catalysts (tetraphenyl tin and tetra‐n‐butyldichlorodistannoxane), and at three different polymerization temperatures (143, 165, and 190 °C). The products were characterized with differential scanning calorimetry, size exclusion chromatography, vapor pressure osmometry, 13C NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF). The resulting polymers contained less than 1 mol % lactide, as shown by NMR. The number‐average molecular weights were calculated from the ratio of the area peaks of ester carbonyl and carboxylic acid end groups via 13C NMR. The stereosequences were analyzed by 13C NMR spectroscopy on the basis of triad effects. Tetraphenyl tin was an effective transesterification catalyst, and the randomization of the stereosequence at 190 °C was observed. In contrast, the distannoxane catalyst caused comparatively less transesterification reaction, and the randomization of the stereosequences was slow even at 190 °C. The L ‐lactic acid and D ‐lactic acid isomers were added to the polymer chain in a small, blocky fashion. The MALDI‐TOF spectra of poly(L ‐lactic acid) (PLA) chains doped with Na+ and K+ cations showed that the PLA chains had the expected end groups. The MALDI‐TOF analysis also enabled the simultaneous detection of the cyclic oligomers of PLA present in these samples, and this led to the full structural characterization of the molecular species in PLA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2164–2177, 2005  相似文献   

5.
When PEG (M.W.~5000 Daltons) is conjugated to poly(l ‐alanine), the polymer aqueous solutions (<10.0 wt.%) undergo sol‐to‐gel (thermal gelation), whereas it is conjugated to poly(l ‐lactic acid), the polymer aqueous solutions (>30.0 wt.%) undergo gel‐to‐sol (gel melting) as the temperature increases. In the search for molecular origins of such a quite different phase behavior, poly(ethylene glycol)‐poly(l ‐alanine) (PEG‐PA; EG113‐A12) and poly(ethylene glycol)‐poly(l ‐lactic acid) (PEG‐PLA; EG113‐LA12) are synthesized and their aqueous solution behavior is investigated. PEG‐PAs with an α‐helical core assemble into micelles with a broad size distribution, and the dehydration of PEG drives the aggregation of the micelles, leading to thermal gelation, whereas increased molecular motion of the PLA core overwhelms the partial dehydration of PEG, thus gel melting of the PEG‐PLA aqueous solutions occurs. The core‐rigidity of micelles must be one of the key factors in determining whether a polymer aqueous solution undergoes sol‐to‐gel or gel‐to‐sol transition, as the temperature increases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, , 52, 2434–2441  相似文献   

6.
Novel amphiphilic diblock copolymers from a combination of hydrophobic‐functional poly(lactides) (PLAs) with hydrophilic‐functional PLAs or poly(malic acid), respectively, toward fully biodegradable materials for medical applications, such as micellar drug delivery systems, are reported for the first time. The presented PLA‐based polymeric micelles are characterized by their small size below 100 nm, low critical micellar concentrations, good in vitro stabilities at room and body temperature, and efficient incorporation capability of hydrophobic compounds, particularly with regard to potential drug substances. Moreover, the advantage of being totally degradable with different rates at different pH values, as investigated in medical cancer treatment, is demonstrated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3244–3254, 2010  相似文献   

7.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

8.
A novel amphiphilic biodegradable triblock copolymer (PGL‐PLA‐PGL) with polylactide (PLA) as hydrophobic middle block and poly(glutamic acid) (PGL) as hydrophilic lateral blocks was successfully synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and N‐carboxy anhydride (NCA) consecutively and by subsequent catalytic hydrogenation. The results of cell experiment of PGL‐PLA‐PGL suggested that PGL could improve biocompatibility of polyester obviously. The copolymer could form micelles of spindly shape easily in aqueous solution. The pendant carboxyl groups of the triblock copolymer were further activated with N‐hydroxysuccinimide and combined with a cell‐adhesive peptide GRGDSY. Incorporation of the oligopeptide further enhanced the hydrophilicity and led to formation of spherical micelles. PGL‐PLA‐PGL showed better cell adhesion and spreading ability than pure PLA and the GRGDSY‐containing copolymer exhibited even further improvement in cell adhesion and spreading ability, indicating that the copolymer could find a promising application in drug delivery or tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3218–3230, 2007  相似文献   

9.
This study synthesized thermo‐sensitive amphiphilic block‐graft PNiPAAm‐b‐(PαN3CL‐g‐alkyne) copolymers through ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) with hydroxyl‐terminated macroinitiator poly(N‐isopropylacrylamide) (PNiPAAm), substituting pendent chlorides with sodium azide. This was then used to graft various kinds of terminal alkynes moieties by means of the copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition (“click” reaction). 1H NMR, FTIR, and gel permeation chromatography (GPC) was used to characterize these copolymers. The solubility of the block‐graft copolymers in aqueous media was investigated using turbidity measurement, revealing a lower critical solution temperature (LCST) in the polymers. These solutions showed reversible changes in optical properties: transparent below the LCST, and opaque above the LCST. The LCST values were dependant on the composition of the polymer. With critical micelle concentrations (CMCs) in the range of 2.04–9.77 mg L?1, the block copolymers formed micelles in the aqueous phase, owing to their amphiphilic characteristics. An increase in the length of hydrophobic segments or a decrease in the length of hydrophilic segments amphiphilic block‐graft copolymers produced lower CMC values. The research verified the core‐shell structure of micelles by 1H NMR analyses in D2O. Transmission electron microscopy was used to analyze the morphology of the micelles, revealing a spherical structure. The average size of the micelles was in the range of 75–145 nm (blank), and 105–190 nm (with drug). High drug entrapment efficiency and drug loading content were observed in the drug micelles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

11.
Typically, phenylethynyl (PE) end‐capped oligomides require a temperature of 370 °C for 1 h to develop a crosslinked system. A published method using poly(ethylene glycol)s (DM‐PEG‐250 and PEG‐400) as cosolvents with NMP was effective in crosslinking the ethynyl end‐caps at 250 °C/3 h in nonsulfonated oligomides. The application of this novel crosslinked method to PE end‐capped sulfonated oligomides was effective but caused a secondary crosslinked network via the sulfonic acid groups and ethylene glycol solvents. The solid‐state 13C NMR spectral data on 13C‐labeled end‐caps in the PE‐3F‐SPI‐3 oligomide provide evidence for the ethynyl to ethynyl and ethylene oxide sulfonate ester dual crosslinked structure. Infrared spectroscopy of model compounds also provides evidence for the presence of crosslinked sulfonate ester and appended sulfonate ester side chains. 13C NMR also provided quantitative data on the extent of the ethynyl to ethynyl crosslinking reaction and sulfonate ester crosslinks and side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A series of amphiphilic graft copolymers P(HFMA)‐g‐P(SPEG) comprising poly(hexafluorobutyl methacrylate) (PHFMA) backbones and poly(ethylene glycol) (PEG) side chains were synthesized by copolymerization of HFMA and SPEG macromonomer with the p‐vinylbenzyl end group. The SPEG macromonomer was synthesized by reacting Methoxy poly(ethylene glycol) (MPEG) with p‐chloromethylstyrene in THF in the presence of NaH. The macromonomer and amphiphilic graft copolymer were characterized by FTIR, 1H NMR, 19F NMR, and gel permeation chromatography (GPC). The critical micelle concentration (CMC) of the amphiphilic graft copolymer was measured by surface tension technique. The results showed that the CMC decreased with increasing HFMA contents in the graft copolymers. The interaction between P(HFMA)‐g‐P(SPEG) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, transmission electron microscopy (TEM), and photon correlation spectroscopy (PCS). The fluorescence spectrum showed that the fluorescence intensity of BSA increased with increasing content of HFMA in P(HFMA)‐g‐P(SPEG) and concentration of P(HFMA)‐g‐P(SPEG) in the P(HFMA)‐g‐P(SPEG)/BSA solution. TEM micrographs showed that P(HFMA)‐g‐P(SPEG) mainly formed core‐shell structure micelles. When BSA was added, the micelles changed from a core‐shell structure into a worm‐like, vesicle‐like and hollow‐like structure with different initial concentrations of the copolymer. The size distribution of the micelles increased proving that the copolymer micelles encapsulated the bovine serum albumin. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4895–4907, 2009  相似文献   

13.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

15.
Ethyl cellulose graft poly(poly(ethylene glycol) methyl ether methacrylate) (EC‐g‐P(PEGMA)) amphiphilic copolymers were synthesized via atom transfer radical polymerization (ATRP) and characterized by FTIR, 1H NMR, and gel permeation chromatography. Reaction kinetics analysis indicated that the graft copolymerization is living and controllable. The self‐assembly and thermosensitive property of the obtained EC‐g‐P(PEGMA) amphiphilic copolymers in water were investigated by dynamic light scattering, transmission electron microscopy, and transmittance. It was found that the EC‐g‐P(PEGMA) amphiphilic copolymers can self‐assemble into spherical micelles in water. The size of the micelles increases with the increase of the side chain length. The spherical micelles show thermosensitive properties with a lower critical solution temperature around 65 °C, which almost independent on the graft density and the length of the side chains. The obtained EC‐g‐P(PEGMA) graft copolymers have both the unique properties of poly(ethylene glycol) and cellulose, which may have the potential applications in biomedicine and biotechnology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 46: 6907–6915, 2008  相似文献   

16.
Novel carboxyl‐ and amino‐functionalized copolyesters, based on poly(ε‐caprolactone)‐block‐poly(butylene fumarate)‐block‐poly(ε‐caprolactone), were efficiently synthesized via Michael‐type thiol‐ene click chemistry. The resulting amphiphilic copolyesters with controllable molecular weights and abundant positively or negatively charged groups could spontaneously form pH‐sensitive micelles in aqueous solutions, as confirmed by transmission electron microscopy, dynamic light scattering, fluorescence probing technique, and zeta potential analyses. Importantly, charge‐reversal hybrid micelles can be obtained by co‐assembly of carboxyl‐ and amino‐functionalized copolyesters. The surface charges of hybrid micelles reversed rapidly from negative to positive at isoelectric point via protonation of surface carboxyl and amino groups. Interestingly, the hybrid micelles showed apparent pH‐triggered Nile red‐release behavior in acidic condition resembling tumor intracellular environment, which is fairly desirable for drug delivery. Our work indicates that co‐assembly is a facile but efficient way to prepare charge‐reversal micelles, which have great potential to be used as intelligent drug delivery systems for cancer therapy. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1259–1267  相似文献   

17.
A series of RuII heterodinuclear complexes of ABA ‐type with electron‐deficient bis‐terpyridines as building blocks was synthesized by (R‐tpy)RuIIICl3 complexation. These compounds were characterized by NMR spectroscopy, MALDI‐TOF, ESI‐TOF mass spectrometry, and elemental analysis. The results were compared with a coil‐rod‐coil RuII metallo‐supramolecular copolymer, which was synthesized by bis‐complex formation between a hydrophilic ω‐terpyridine poly(ethylene glycol) RuII mono‐complex and a hydrophobic bis‐terpyridine‐functionalized rigid core. This amphiphilic RuII triblock copolymer showed self‐assembly to clusters and micelles in aqueous solution, which was studied by transmission electron microscopy and dynamic light scattering. Applying velocity sedimentation experiments the number of amphiphilic RuII ABA triblock copolymer molecules within the micelles could be estimated. Finally, the photophysical properties of the RuII supramolecular assemblies were investigated by UV–vis spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Novel biodegradable amphiphilic graft copolymers containing hydrophobic poly(ester‐carbonate) backbone and hydrophilic poly(ethylene glycol) (PEG) side chains were synthesized by a combination of ring‐opening polymerization and “click” chemistry. First, the ring‐opening copolymerization of 5,5‐dibromomethyl trimethylene carbonate (DBTC) and ε‐caprolactone (CL) was performed in the presence of stannous octanoate [Sn(Oct)2] as catalyst, resulting in poly(DBTC‐co‐CL) with pendant bromo groups. Then the pendant bromo groups were completely converted into azide form, which permitted “click” reaction with alkyne‐terminated PEG by Huisgen 1,3‐dipolar cycloadditions to give amphiphilic biodegradable graft copolymers. The graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectra and gel permeation chromatography measurements, which confirmed the well‐defined graft architecture. These copolymers could self‐assemble into micelles in aqueous solution. The size and morphologies of the copolymer micelles were measured by transmission electron microscopy and dynamic light scattering, which are influenced by the length of PEG and grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

19.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Amphiphilic AB‐type diblock copolymers composed of hydrophobic poly(L ‐lactide) (PLA) segments and hydrophilic poly(glycolic acid lysine) [poly(Glc‐Lys)] segments with amino side‐chain groups self‐associated to form PLA‐based polymeric micelles with amino surfaces in an aqueous solution. The average diameter of the loose core–shell polymeric micelles for poly(Glc‐Lys) [number‐average molecular weight (Mn) = 1240]‐b‐PLA (Mn = 7000) obtained by a dimethyl sulfoxide/water dialysis method was estimated to be about 50 nm in water by dynamic light scattering measurements. The size and shape of the obtained polymeric micelles were further observed with transmission electron microscopy and atomic force microscopy. To investigate the possibility of applying the obtained PLA‐based polymeric micelles as bioabsorbable vehicles for hydrophobic drugs, we tested the entrapment of drugs in poly(Glc‐Lys) (Mn = 1240)‐b‐PLA (Mn = 7000) micelles and their release with doxorubicin as a hydrophobic drug. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1426–1432, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号