首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a new strategy for fabricating well‐defined POSS‐based polymeric materials with and without solvent by frontal polymerization (FP) at ambient pressure. First, we functionalize polyhedral oligomeric silsesquioxane (POSS) with isophorone diisocyanate (IPDI). With these functionalized POSS‐containing isocyanate groups, POSS can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP in situ. Constant velocity FP is observed without significant bulk polymerization. The morphology and thermal properties of POSS‐based hybrid polymers prepared via FP are comparatively investigated on the basis of scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). Results show that the as‐prepared POSS‐based polymeric materials exhibit a higher glass transition temperature than that of pure PNMA, ascribing to modified POSS well‐dispersed in these hybrid polymers. Also, the products with different microstructures display different thermal properties. The pure PNMA exhibits a featureless morphology, whereas a hierarchical morphology is obtained for the POSS‐based polymeric materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1136–1147, 2009  相似文献   

2.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   

3.
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005  相似文献   

4.
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005  相似文献   

5.
Nanocomposites composed of a poly(vinylidene fluoride) (PVDF) matrix and 0, 3, 5, and 8 wt % fluoropropyl polyhedral oligomeric silsesquioxane (FP‐POSS) were prepared by using the solvent evaporation method. The morphology and the crystalline phase of the nanocomposites were investigated by digital microscopy, scanning probe microscopy, X‐ray diffractometer, and Fourier transform infrared spectroscopy. FP‐POSS acted as nucleating agent in PVDF matrix. A small content of FP‐POSS resulted in an incomplete nucleation of PVDF and generated bigger spherical particles, whereas higher contents led to a complete nucleation and formed more separate and less‐crosslinked particles. Nanoindentation, nanoscratch, and nanotensile tests were carried out to study the influence of different contents of FP‐POSS on the key static and dynamic mechanical properties of different systems. The nanocomposite with 3 wt % FP‐POSS was found to possess enhanced elastic properties and hardness. However, with the increase of the FP‐POSS content, the elastic modulus and hardness were found to decrease, and the improvement on stiffness was negative at contents of 5 and 8 wt %. Compared with neat PVDF, the scratch resistance of the PVDF/FP‐POSS nanocomposites was decreased due to a rougher surface derived from the bigger spherulites. Nanotensile testing results showed both the stiffness and toughness of PVDF‐FP3% were enhanced and further additions of FP‐POSS brought dramatic enhancements in toughness while associated with a decline in stiffness. Dynamical mechanical properties indicated the viscosity of the nanocomposites increased with the increasing FP‐POSS contents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
Ramírez  C.  Abad  M. J.  Barral  L.  Cano  J.  Díez  F. J.  López  J.  Montes  R.  Polo  J. 《Journal of Thermal Analysis and Calorimetry》2003,72(2):421-429
A new material belongs to the family of polyhedral oligomeric silsesquioxanes, the 1-(3-glycidyl) propoxy-3,5,7,9,11,13,15-isobutylpentacyclo-[9.5.1.1(3,9).1(5,15).1(7,13)]octasiloxane (glycidylisobutyl-POSS) is characterized by differential scanning calorimetry, thermogravimetric analysis and atomic force microscopy. Epoxy systems based on diglycidyl ether of bisphenol A (DGEBA) cured with the diamines, 4,4'-diamine-diphenylmethane (DDM) and 1,4-phenylenediamine (pPDA), were kinetically studied by differential scanning calorimetry in isothermal and dynamic modes. The thermal behaviour of these systems as the glycidylisobutyl-POSS was added, is discussed later. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was used to prepare the polybenzoxazine (PBA‐a) nanocomposites containing polyhedral oligomeric silsesquioxane (POSS). The crosslinking reactions involved with the formation of the organic–inorganic networks can be divided into the two types: (1) the ring‐opening polymerization of benzoxazine and (2) the subsequent reaction between the in situ formed phenolic hydroxyls of PBA‐a and the epoxide groups of OpePOSS. The morphology of the nanocomposites was investigated by means of scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Differential scanning calorimetry and dynamic mechanical analysis showed that the nanocomposites displayed higher glass‐transition temperatures than the control PBA‐a. In the glassy state, the nanocomposites containing less than 30 wt % POSS displayed an enhanced storage modulus, whereas the storage moduli of the nanocomposites containing more than 30 wt % POSS were lower than that of the control PBA‐a. The dynamic mechanical analysis results showed that all the nanocomposites exhibited enhanced storage moduli in the rubbery states, which was ascribed to the two major factors, that is, the nanoreinforcement effect of POSS cages and the additional crosslinking degree resulting from the intercomponent reactions between PBA‐a and OpePOSS. Thermogravimetric analysis indicated that the nanocomposites displayed improved thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1168–1181, 2006  相似文献   

8.
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) was used to prepare a POSS‐containing reversible addition‐fragmentation transfer (RAFT) agent. The POSS‐containing RAFT agent was used in the RAFT polymerization of N‐isopropylacrylamide (NIPAM) to produce tadpole‐shaped organic/inorganic hybrid Poly(N‐isopropylacrylamide) (PNIPAM). The results show that the POSS‐containing RAFT agent was an effective chain transfer agent in the RAFT polymerization of NIPAM, and the polymerization kinetics were found to be pseudo‐first‐order behavior. The thermal properties of the organic/inorganic hybrid PNIPAM were also characterized by differential scanning calorimetry. The glass transition temperature (Tg) of the tadpole‐shaped inorganic/organic hybrid PNIPAM was enhanced by POSS molecule. The self‐assembly behavior of the tadpole‐shaped inorganic/organic hybrid PNIPAM was investigated by atomic force microscopy and dynamic light scattering. The results show the core‐shell nanostructured micelles with a uniform diameter. The diameter of the micelle increases with the molecular weight of the hybrid PNIPAM. Surprisingly, the micelle of the tadpole‐shaped inorganic/organic hybrid PNIPAM with low molecular weight has a much bigger and more compact core than that with high molecular weight. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7049–7061, 2008  相似文献   

9.
Epoxy resin (EP)/polyhedral oligomeric silsesquioxane (POSS) hybrids were prepared based on octavinyl polyhedral oligomeric silsesquioxane (OVPOSS) and phosphorus‐containing epoxy resin (PCEP). The PCEP was synthesized via the reaction between bisphenol A epoxy resin (DGEBA) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO). The structure and morphology of PCEP/OVPOSS hybrids were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Differential scanning calorimetry revealed that the PCEP/OVPOSS hybrids possessed higher glass transition temperatures than that of PCEP. The thermal stability of the PCEP/OVPOSS hybrids was studied using thermogravimetric analysis (TGA). The TGA results illustrated the synergistic effect of phosphorus–silicon of flame retardancy: phosphorus promotes the char formation, and silicon protects the char from thermal degradation. The thermal degradation mechanism of the PCEP/OVPOSS hybrids was investigated by real time Fourier transform infrared spectra and pyrolysis/gas chromatogram/mass spectrometry (Py‐GC/MS) analysis. It was found that OVPOSS migrated to the surface of the matrix and then sublimed from the surface in nitrogen; whereas, the vinyl groups of OVPOSS were oxidated to form a radical trap which could react with pyrolysis radicals derived from PCEP to form the branched and crosslinked structure in air. The combustion behaviors of the hybrids were evaluated by micro combustion calorimetry. The addition of OVPOSS obviously decreased the value of peak heat release rate and total heat release of the hybrids. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy were used to explore the char residues of the PCEP and the hybrids. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 693–705, 2010  相似文献   

10.
The reactive blending composites of isotactic polypropylene (PP)/octavinyl polyhedral oligomeric silsesquioxane (POSS) were prepared in the presence of dicumyl peroxide. Comparison of the rheological behavior of physical and reactive blending composites was made by oscillatory rheological measurements. It was found that the viscosity of physical blending composites drops at lower POSS content (0.5–1 wt %) and thereafter increases with increasing POSS content; that of reactive blending composites increases with increasing POSS content and displays a solid‐like rheological behavior at low frequency region when POSS content is higher than 1 wt %. The deviation of reactive blending composites from the scaling log G′–log G″ of linear polymer in Han plot, upturning at high viscosity in Cole–Cole plot, and from van Gurp–Palmen plot are related to the gelation behavior reactively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 526–533, 2008  相似文献   

11.
Polyhedral oligomeric silsesquioxane (POSS) polymers were synthesized by the dehydrogenative condensation of (HSiO3/2)8 with water in the presence of diethylhydroxylamine followed by trimethylsilylation. Coating films were prepared by spin‐coating of the coating solution prepared by the dehydrogenative condensation of POSS. The hardness of the coating films was evaluated using a pencil‐hardness test and was found to increase up to 8H with increases in the curing temperature. Free‐standing film and silica gel powder were prepared by aging the coating solution at room temperature. The silica gel powder was subjected to heat treatment under air atmosphere to show a specific surface area of 440 m2 g−1 at 100 °C, which showed a maximum at 400 °C as 550 m2 g−1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A metal-doped organic and inorganic hybrid polyhedral oligomeric silsesquioxanes (POSS) with a titanium atom in the POSS cage and an ethanolamine substitute group in the corner, namely MEA-Ti-POSS, was synthesized through simple condensation reaction and substitute reaction. It was blended with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to form a kind of blending-type flame retardant system for the modification of epoxy resins. The thermal stability, flame retardancy and mechanical properties of cured epoxy resin composites were studied. Comparing with pure epoxy resin, the LOI value of EP/MEA-Ti-POSS/DOPO composites was raised from 25.2% to 32.7%, and the UL-94 grade reached V-0 level at a loading of the mixture of 5% MEA-Ti-POSS and 5% DOPO. In addition, the cone calorimetry results showed that the heat release rate, total heat release and total smoke production as well as smoke production rate were all reduced during the combustion of EP/MEA-Ti-POSS/DOPO composites. The residual char analysis revealed that carbon residues of EP/MEA-Ti-POSS/DOPO composite served as a physical protective layer to insulate the oxygen and combustible gases to reduce the ablation of the matrix. It was concluded that the mixture of MEA-Ti-POSS and DOPO not only effectively raised the thermal stability and flame retardancy of epoxy composited materials, but also improved their mechanical properties, which expanded a promising application of the metal-POSS derivatives as non-halogen additives in the flame retardant polymers.  相似文献   

13.
3‐Acryloxypropylhepta(3,3,3‐trifluoropropyl) polyhedral oligomeric silsesquioxane (POSS) was synthesized and used as a modifier to improve the thermal response rates of poly(N‐isopropylacrylamide) (PNIPAM) hydrogel. The radical copolymerization among N‐isopropylacrylamide (NIPAM), the POSS macromer and N,N′‐methylenebisacrylamide was performed to prepare the POSS‐containing PNIPAM cross‐linked networks. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) showed that the POSS‐containing PNIPAM networks displayed the enhanced glass transition temperatures (Tg's) and improved thermal stability when compared with plain PNIPAM network. The POSS‐containing PNIPAM hydrogels exhibited temperature‐responsive behavior as the plain PNIPAM hydrogels. It is noted that with the moderate contents of POSS, the POSS‐containing PNIPAM hydrogels displayed much faster response rates in terms of swelling, deswelling, and re‐swelling experiments than plain PNIPAM hydrogel. The improved thermoresponsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase‐separated morphology in the hydrogels, that is, the POSS structural units in the hybrid hydrogels were self‐assembled into the highly hydrophobic nanodomains, which behave as the microporogens and promote the contact of PNIPAM chains and water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 504–516, 2009  相似文献   

14.
A polyhedral oligomeric silsesquioxane (POSS), consisting mainly of a mixture of octahedra, nonahedra, and decahedra with bulky and flexible organic substituents, with three secondary hydroxyls per organic group, was used to modify epoxy networks produced by the homopolymerization of diglycidyl ether of bisphenol A in the presence of benzyldimethylamine. Several physical, thermal, and mechanical properties of the cured materials containing 0, 10, 30, and 50 wt % POSS were determined. The addition of POSS increased the elastic modulus and the yield stress measured in uniaxial compression tests, mainly because of the increase in the cohesive energy density produced by hydrogen bonding through the hydroxyl groups. A constant yield stress/elastic modulus ratio equal to 0.03 was observed for different POSS concentrations and test temperatures. The glass‐transition temperature decreased with POSS addition because of the flexibility of organic branches present in the POSS structure and the decrease in the crosslink density (determined from the rubbery modulus). Although a combination of a reduction in the glass‐transition temperature (plasticization) with an increase in the glassy modulus (antiplasticization) is a well‐known phenomenon, what is original is that in this case it was not the result of the suppression (or reduction in intensity) of subglass relaxations but was produced by an increase in the cohesive energy density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1451–1461, 2003  相似文献   

15.
The miscibility of a phenolic resin with polyhedral oligomeric silsesquioxane (POSS) hybrids and the specific interactions between them were investigated with Fourier transform infrared (FTIR) spectroscopy and wide‐angle X‐ray diffraction (WAXD). An analysis of the morphology and microstructure was performed with polarized optical microscopy and atomic force microscopy (AFM). The interassociation equilibrium constant between the phenolic resin and POSS (38.7) was lower than the self‐association equilibrium constant of pure phenolic (52.3) according to the Painter–Coleman association model. This result indicated that POSS was partially miscible with the phenolic resin. A polarized optical microscopy image of a phenolic/POSS hybrid material (20 wt % POSS) indicated that the crystals of POSS were arranged evenly in the phenolic matrix; the self‐assembled array of POSS crystals was also confirmed by AFM. This phenomenon was consistent with the FTIR spectroscopy and WAXD analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1127–1136, 2004  相似文献   

16.
The curing reaction and kinetics of o‐cresol formaldehyde epoxy resin (o‐CFER) with polyhedral oligomeric silsesquioxane of N‐aminoethyl‐γ‐amino propyl group (AEAP‐POSS) were investigated by differential scanning calorimetry (DSC). The thermal, mechanical, and dielectric properties of o‐CFER/AEAP‐POSS nanocomposites were investigated with thermogravimetric analysis (TGA), torsional braid analysis (TBA), tensile tester, impact tester, and electric analyzer, respectively. The results show that the activation energy (E) of curing reaction is 58.08 kJ/mol, and the curing reaction well followed the ?esták‐Berggren (S‐B) autocatalytic model. The glass transition temperature (Tg) increases with the increase in AEAP‐POSS content, and reaches the maximum, 107°C, when the molar ratio (Ns) of amino group to epoxy group is 0.5. The nanocomposites containing a higher percentage of AEAP‐POSS exhibited a higher thermostability. The AEAP‐POSS can effectively increase the mechanical properties of epoxy resin, and the tensile and impact strengths are 2.84 MPa and 143.25 kJ m?2, respectively, when Ns is 0.5. The dielectric constant (ε), dielectric loss factor (tan δ), volume resistivity (ρv), and surface resistivity (ρs) are 4.98, 3.11 × 10?4, 3.17 × 1012 Ω cm3, and 1.41 × 1012 Ω cm2, respectively, similarly at Ns 0.5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

18.
We have prepared epoxy/polyhedral oligomeric silsesquioxane (POSS) nanocomposites by photopolymerization from octakis(glycidylsiloxy)octasilsesquioxane (OG) and diglycidyl ether of bisphenol A. We used nuclear magnetic resonance, Raman, and Fourier transform infrared spectroscopies to characterize the chemical structure of the synthetic OG. Differential scanning calorimetry and dynamic mechanical analysis (DMA) revealed that the nanocomposites possessed higher glass transition temperatures than that of the pristine epoxy resin. Furthermore, DMA indicated that all of the nanocomposites exhibited enhanced storage moduli in the rubbery state, a phenomenon that we ascribe to both the nano‐reinforcement effect of the POSS cages and the additional degree of crosslinking that resulted from the reactions between the epoxy and OG units. Thermogravimetric analysis revealed that the thermal stability of the nanocomposites was better than that of the pristine epoxy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1927–1934, 2009  相似文献   

19.
Three different polyhedral oligomeric silsesquioxanes (POSS), trisilanolphenyl polyhedral oligomeric silsesquioxane (T‐POSS), octaaminophenyl polyhedral oligomeric silsesquioxanes (OAPS), and octaphenyl polyhedral oligomeric silsesquioxanes (OPS) were incorporated into phenolic resin (PR), respectively; PR/POSS composites were successfully prepared, and the properties of PR/POSS composites were studied. The limiting oxygen index (LOI), cone calorimeter, and thermal gravimetric analysis (TGA) were used for the estimation of flame retardancy and thermal stability. Oxyacetylene flame test and flexural strength test were used to study the ablative and mechanical properties of the PR/POSS composites. The results indicated that T‐POSS was more effective in improving the flame retardancy of PR than OAPS or OPS. Meanwhile, compared with pure PR, the second line ablation rates of PR/4% T‐POSS, PR/4% OAPS, and PR/4% OPS were significantly reduced by 53.3%, 61.9%, and 40.0%, respectively. In addition, the thermal stability and flexural strength of PR/4% T‐POSS were significantly higher than that of all other PR composites.  相似文献   

20.
Frontal polymerization (FP) has been successfully applied, for the first time, to obtain polymeric nanocomposites containing polyhedral oligomeric silsesquioxanes (POSS) in an amine‐cured epoxy matrix. Variations of maximum temperature (Tmax) and front velocity (Vf) have been studied. A comparison of these products with the corresponding materials, obtained by the classical batch polymerization technique, demonstrated that FP allows a higher degree of conversion than batch polymerization. The products have been characterized in terms of their thermal behavior with DSC analysis. SEM and X‐ray analyses revealed the morphology and the structures of the nanocomposites. The nanocomposites obtained by FP have the same characteristics of those synthesized, in much longer times, by batch polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4514–4521, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号